Call Detail Records to Obtain Estimates of Forcibly Displaced Populations

  • David Pastor-EscuredoEmail author
  • Asuka Imai
  • Miguel Luengo-Oroz
  • Daniel Macguire


Call Detail Records have great potential to drive humanitarian action for early warning, monitoring, decision-making, and evaluation. The Data For Development Challenge leveraged mobile phone data for Development in Senegal. We further explored methodologies and protocols to use this data to support humanitarian action for refugees. Obtaining estimates of forcibly displaced population requires not only data analysis but also a solid protocol to ensure privacy and the right outcomes of the project. When no refugee labeled data is available, a framework to identify displaced population is necessary. We present a methodology to analyze mobility that minimizes privacy risks by subtracting mobility patterns of the population until finding those patterns indicative of the displaced population.



We thank Orange and the Data For Development Challenge organizers, especially Nicolas de Cordes. We also thank UNHCR Innovation and United Nations Global Pulse teams. This work was supported by the UNHCR Innovation fund.


  1. 1.
    Bagrow JP, Wang D, Barabasi AL (2011) Collective response of human populations to large-scale emergencies. PloS one 6(3):e17680CrossRefGoogle Scholar
  2. 2.
    Barlacchi G, De Nadai M, Larcher R, Casella A, Chitic C, Torrisi G, Antonelli F, Vespignani A, Pentland A, Lepri B (2015) A multi-source dataset of urban life in the city of milan and the province of trentino. Sci Data 2:150055CrossRefGoogle Scholar
  3. 3.
    Bogomolov A, Lepri B, Staiano J, Oliver N, Pianesi F, Pentland A (2014) Once upon a crime: towards crime prediction from demographics and mobile data. In: Proceedings of the 16th international conference on multimodal interaction, ACM, pp 427–434Google Scholar
  4. 4.
    Calabrese F, Ferrari L, Blondel VD (2015) Urban sensing using mobile phone network data: a survey of research. ACM Comput Surv (CSUR) 47(2):25Google Scholar
  5. 5.
    De Montjoye YA, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the crowd: the privacy bounds of human mobility. Sci Rep 3:1376CrossRefGoogle Scholar
  6. 6.
    De Montjoye YA, Radaelli L, Singh VK et al (2015) Unique in the shopping mall: on the reidentifiability of credit card metadata. Science 347(6221):536–539CrossRefGoogle Scholar
  7. 7.
    Decuyper A, Rutherford A, Wadhwa A, Bauer JM, Krings G, Gutierrez T, Blondel VD, Luengo-Oroz MA (2014) Estimating food consumption and poverty indices with mobile phone data. arXiv:14122595
  8. 8.
    Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, Blondel VD, Tatem AJ (2014) Dynamic population mapping using mobile phone data. Proc Natl Acad Sci 111(45):15888–15893CrossRefGoogle Scholar
  9. 9.
    Expert USGI (2014) Advisory group on a data revolution for sustainable development (ieag). Mobilising the data revolution for sustainable development, a world that countsGoogle Scholar
  10. 10.
    Gething PW, Tatem AJ (2011) Can mobile phone data improve emergency response to natural disasters? PLoS Med 8(8):e1001085CrossRefGoogle Scholar
  11. 11.
    Ghurye J, Krings G, Frias-Martinez V (2016) A framework to model human behavior at large scale during natural disasters. In: 2016 17th IEEE International conference on mobile data management (MDM), IEEE, pp 18–27Google Scholar
  12. 12.
    Gonzalez MC, Hidalgo CA, Barabasi AL (2008) Understanding individual human mobility patterns. Nature 453(7196):779CrossRefGoogle Scholar
  13. 13.
    Herrera-Yagüe C, Schneider CM, Couronné T, Smoreda Z, Benito RM, Zufiria PJ, González MC (2015) The anatomy of urban social networks and its implications in the searchability problem. Sci Rep 5:10265CrossRefGoogle Scholar
  14. 14.
    Iqbal MS, Choudhury CF, Wang P, González MC (2014) Development of origin-destination matrices using mobile phone call data. Transp Res Part C Emerg Technol 40:63–74CrossRefGoogle Scholar
  15. 15.
    Jean N, Burke M, Xie M, Davis WM, Lobell DB, Ermon S (2016) Combining satellite imagery and machine learning to predict poverty. Science 353(6301):790–794CrossRefGoogle Scholar
  16. 16.
    Lu X, Wrathall DJ, Sundsøy PR, Nadiruzzaman M, Wetter E, Iqbal A, Qureshi T, Tatem A, Canright G, Engø-Monsen K et al (2016) Unveiling hidden migration and mobility patterns in climate stressed regions: a longitudinal study of six million anonymous mobile phone users in Bangladesh. Glob Environ Change 38:1–7CrossRefGoogle Scholar
  17. 17.
    Martin-Gutierrez S, Borondo J, Morales A, Losada J, Tarquis A, Benito R (2016) Agricultural activity shapes the communication and migration patterns in Senegal. Chaos Interdiscip J Nonlinear Sci 26(6):065305CrossRefGoogle Scholar
  18. 18.
    Martínez EA, Rubio MH, Martinez RM, Arias JM, Patane D, Zerbe A, Kirkpatrick R, Luengo-Oroz M (2016) Measuring economic resilience to natural disasters with big economic transaction data. arXiv:160909340
  19. 19.
    de Montjoye YA, Smoreda Z, Trinquart R, Ziemlicki C, Blondel VD (2014) D4D-Senegal: the second mobile phone data for development challenge. arXiv:14074885
  20. 20.
    de Montjoye YA, Rocher L, Pentland AS et al (2016) Bandicoot: a python toolbox for mobile phone metadata. J Mach Learn Res 17:1–5MathSciNetGoogle Scholar
  21. 21.
    Pappalardo L, Vanhoof M, Gabrielli L, Smoreda Z, Pedreschi D, Giannotti F (2016) An analytical framework to nowcast well-being using mobile phone data. Int J Data Sci Anal 2(1–2):75–92CrossRefGoogle Scholar
  22. 22.
    Pastor-Escuredo D, Morales-Guzmán A, Torres-Fernández Y, Bauer JM, Wadhwa A, Castro-Correa C, Romanoff L, Lee JG, Rutherford A, Frias-Martinez V, et al (2014) Flooding through the lens of mobile phone activity. arXiv:14116574
  23. 23.
    Pastor-Escuredo D, Savy T, Luengo-Oroz MA (2015) Can fires, night lights, and mobile phones reveal behavioral fingerprints useful for development? arXiv:150100549
  24. 24.
    Pastor-Escuredo D, Torres Y, Martinez M, Zufiria PJ (2018) Floods impact dynamics quantified from big data sources. arXiv:180409129
  25. 25.
    Pokhriyal N, Jacques DC (2017) Combining disparate data sources for improved poverty prediction and mapping. Proc Natl Acad Sci 114(46):E9783–E9792CrossRefGoogle Scholar
  26. 26.
    Pokhriyal N, Dong W, Govindaraju V (2015) Virtual networks and poverty analysis in Senegal. arXiv:150603401
  27. 27.
    Pulse UG (2012) Big data for development: opportunities & challenges. United Nations Global Pulse.
  28. 28.
    Pulse UG (2015) Mapping the risk-utility landscape: mobile data for sustainable development and humanitarian action. Global Pulse Project Series no 18Google Scholar
  29. 29.
    Pulse UG (2016) Integrating big data into the monitoring and evaluation of development programmes. United Nations Global PulseGoogle Scholar
  30. 30.
    Song Y, Dahlmeier D, Bressan S (2014) Not so unique in the crowd: a simple and effective algorithm for anonymizing location data. In: PIR@ SIGIR, Citeseer, pp 19–24Google Scholar
  31. 31.
    Tizzoni M, Bajardi P, Decuyper A, King GKK, Schneider CM, Blondel V, Smoreda Z, González MC, Colizza V (2014) On the use of human mobility proxies for modeling epidemics. PLoS Comput Biol 10(7):e1003716CrossRefGoogle Scholar
  32. 32.
    Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO (2012) Quantifying the impact of human mobility on malaria. Science 338(6104):267–270CrossRefGoogle Scholar
  33. 33.
    Wesolowski A, Buckee CO, Engø-Monsen K, Metcalf C (2016) Connecting mobility to infectious diseases: the promise and limits of mobile phone data. J Infect Dis 214(suppl\(\_\)4):S414–S420CrossRefGoogle Scholar
  34. 34.
    Wilson R, zu Erbach-Schoenberg E, Albert M, Power D, Tudge S, Gonzalez M, Guthrie S, Chamberlain H, Brooks C, Hughes C, et al (2016) Rapid and near real-time assessments of population displacement using mobile phone data following disasters: the 2015 Nepal earthquake. PLoS Curr 8Google Scholar
  35. 35.
    Zufiria PJ, Pastor-Escuredo D, Úbeda-Medina L, Hernandez-Medina MA, Barriales-Valbuena I, Morales AJ, Jacques DC, Nkwambi W, Diop MB, Quinn J, et al (2018) Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. PloS one 13(4):e0195714CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Pastor-Escuredo
    • 1
    Email author
  • Asuka Imai
    • 2
  • Miguel Luengo-Oroz
    • 3
  • Daniel Macguire
    • 4
  1. 1.Technical University Madrid and LifeD LabMadridSpain
  2. 2.UNHCRDakarSenegal
  3. 3.United Nations Global PulseNew YorkUSA
  4. 4.UNHCRGenevaSwitzerland

Personalised recommendations