Non Spherical and Inertial Particles in Couette Turbulent Large Scale Structures

  • Guiquan Wang
  • Micheline Abbas
  • Annaïg Pedrono
  • Eric ClimentEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 26)


We are studying dispersion of finite-size particles in a turbulent plane Couette flow by numerical simulations. The effect of particle non-sphericity was discussed (particles are neutrally buoyant and shape varies from oblate to prolate, aspect ratio is ranging from 0.5 to 2). Particle dispersion is analyzed also when inertia is considered for different particle densities for spherical particles (while keeping comparable Stokes number). This work yields evidences that the particle distribution in turbulent flow coherent structures is in general correlated to the cycle of regeneration of turbulence in Couette flow (the strongest correlation being for massless bubbles), and that the particle residence time in large scale vortices is equal to the characteristic time scale of the flow regeneration cycle.


  1. 1.
    Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid. Mech. 23(1), 601–639 (1991)CrossRefGoogle Scholar
  2. 2.
    Kaftori, D., Hetsroni, G., Banerjee, S.: Particle behavior in the turbulent boundary layer. I. motion, deposition, and entrainment. Phys. Fluids 7(5), 1095–1106 (1995)CrossRefGoogle Scholar
  3. 3.
    Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)CrossRefGoogle Scholar
  4. 4.
    Wang, G., Abbas, M., Climent, E.: Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent couette flow. Phys. Rev. Fluids 2(8), 084,302 (2017)Google Scholar
  5. 5.
    Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid. Mech. 49, 249–276 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bhatnagar, A., Gupta, A., Mitra, D., Pandit, R., Perlekar, P.: How long do particles spend in vortical regions in turbulent flows? Phys. Rev. E 94(5), 053,119 (2016)Google Scholar
  7. 7.
    Komminaho, J., Lundbladh, A., Johansson, A.V.: Very large structures in plane turbulent couette flow. J. Fluid Mech. 320, 259–285 (1996)CrossRefGoogle Scholar
  8. 8.
    Pirozzoli, S., Bernardini, M., Orlandi, P.: Turbulence statistics in couette flow at high reynolds number. J. Fluid Mech. 758, 327–343 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Marshall, J.: A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core. Phys. Fluids 10(12), 3236–3238 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guiquan Wang
    • 1
    • 2
  • Micheline Abbas
    • 3
  • Annaïg Pedrono
    • 1
  • Eric Climent
    • 1
    Email author
  1. 1.Institut de Mécanique des Fluides de Toulouse, IMFTUniversité de Toulouse, CNRSToulouseFrance
  2. 2.FERMATUniversité de Toulouse, CNRS, INPT, INSA, UPSToulouseFrance
  3. 3.Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS, INPT, UPSToulouseFrance

Personalised recommendations