Skip to main content

Incompressible Homogeneous Buoyancy-Driven Turbulence

  • Conference paper
  • First Online:
Turbulent Cascades II

Part of the book series: ERCOFTAC Series ((ERCO,volume 26))

  • 573 Accesses

Abstract

We review recent results concerning the idealized framework of incompressible homogeneous buoyancy-driven turbulence, shedding light on the mixing process occurring in variable density fluids subjected to accelerations. Self-similar analysis, results from numerical simulations and anisotropic spectral models establish the sensitivity of the late time dynamics to the distribution of energy at large scales, to the different properties of the mixing and to the resonances inside the mixing zone when a time-varying acceleration is applied. The isotropic and anisotropic part of turbulent spectra are also investigated. Different scenarii are proposed to explain how the turbulent scales within the inertial range are altered by buoyancy forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Corresponding respectively to constant, impulsive or oscillating accelerations.

  2. 2.

    Assuming the mean density profile is linear inside the mixing zone.

  3. 3.

    The limitation in SHT simulations principally comes from the growth of the integral scale but not the mixing zone width which is modelled contrary to classical mixing layer simulations.

  4. 4.

    Special SHT case with a constant destabilizing accelerations \(G_0\).

References

  1. Sharp, D.H.: An overview of Rayleigh-Taylor instability. Physica D 12, 3–18 (1984)

    Article  Google Scholar 

  2. Zhou, Y.: Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. (2017)

    Google Scholar 

  3. Boffetta, G., Mazzino, A.: Incompressible Rayleigh-Taylor turbulence. Annu. Rev. Fluid Mech. 49(1), 119–143 (2017)

    Article  MathSciNet  Google Scholar 

  4. Brouillette, M.: The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech. 34(1), 445–468 (2002)

    Article  MathSciNet  Google Scholar 

  5. Miles, J., Henderson, D.: Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22(1), 143–165 (1990)

    Article  MathSciNet  Google Scholar 

  6. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press (1953)

    Google Scholar 

  7. Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge University Press (2008)

    Google Scholar 

  8. Vladimirova, N., Chertkov, M.: Self-similarity and universality in Rayleigh-Taylor, Boussinesq turbulence. Phys. Fluids 21, 015102 (2009)

    Article  Google Scholar 

  9. Batchelor, G.K., Canuto, V.M., Chasnov, J.R.: Homogeneous buoyancy-generated turbulence. J. Fluid Mech. 235, 349–378 (1992)

    Article  MathSciNet  Google Scholar 

  10. Livescu, D., Ristorcelli, J.R.: Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 43–71 (2007)

    Article  Google Scholar 

  11. Chung, D., Pullin, D.I.: Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech. 643, 279–308 (2010)

    Article  MathSciNet  Google Scholar 

  12. Griffond, J., Gréa, B.-J., Soulard, O.: Unstably stratified homogeneous turbulence as a tool for turbulent mixing modeling. J. Fluids Eng. 136(9), 091201 (2014)

    Article  Google Scholar 

  13. Griffond, J., Gréa, B.-J., Soulard, O.: Numerical investigation of self-similar unstably stratified homogeneous turbulence. J. Turb. 16(2), 167–183 (2015)

    Article  Google Scholar 

  14. Gréa, B.-J.: The rapid acceleration model and growth rate of a turbulent mixing zone induced by Rayleigh-Taylor instability. Phys. Fluids 25, 015118 (2013)

    Article  Google Scholar 

  15. Soulard, O., Griffond, J., Gréa, B.-J.: Large-scale analysis of unconfined self-similar Rayleigh-Taylor turbulence. Phys. Fluids 27, 095103 (2015)

    Article  Google Scholar 

  16. Gréa, B.-J., Burlot, A., Godeferd, F., Griffond, J., Soulard, O., Cambon, C.: Dynamics and structure of unstably stratified homogeneous turbulence. J. Turb. 17(7), 651–663 (2016)

    Article  MathSciNet  Google Scholar 

  17. Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C., Griffond, J.: Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence. J. Fluid Mech. 765, 17–44 (2015)

    Article  MathSciNet  Google Scholar 

  18. Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C., Soulard, O.: Large Reynolds number self-similar states of unstably stratified homogeneous turbulence. Phys. Fluids 27, 065114 (2015)

    Article  Google Scholar 

  19. Cambon, C., Mons, V., Gra, B.-J., Rubinstein, R.: Anisotropic triadic closures for shear-driven and buoyancy-driven turbulent flows. Comput. Fluids 151, 73–84 (2017)

    Article  MathSciNet  Google Scholar 

  20. Canuto, V.M., Dubovikov, M.S., Dienstfrey, A.: A dynamical model for turbulence. IV. Buoyancy-driven flows. Phys. Fluids 9(7), 2118–2131 (1997)

    Article  MathSciNet  Google Scholar 

  21. Briard, A., Iyer, M., Gomez, T.: Anisotropic spectral modeling for unstably stratified homogeneous turbulence. Phys. Rev. Fluids 2, 044604 (2017)

    Article  Google Scholar 

  22. Dimonte, G., Youngs, D.L., Dimits, A., Weber, S., Marinak, M., Wunsch, S., Garasi, C., Robinson, A., Andrews, M.J., Ramaprabhu, P., Calder, A.C., Fryxell, B., Biello, J., Dursi, L., MacNeice, P., Olson, K., Ricker, P., Rosner, R., Timmes, F., Tufo, H., Young, Y.-N., Zingale, M.: A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16(5), 1668–1693 (2004)

    Article  Google Scholar 

  23. Batchelor, G.K., Proudman, I.: The large-scale structure of homogeneous turbulence. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 248(949), 369–405 (1956)

    Article  MathSciNet  Google Scholar 

  24. George, W.K.: The decay of homogeneous isotropic turbulence. Phys. Fluids A: Fluid Dyn. 4(7), 1492–1509 (1992)

    Article  MathSciNet  Google Scholar 

  25. Llor, A.: Langevin equation of big structure dynamics in turbulence. Eur. J. Mech. B 30(5), 480–504 (2011)

    Article  MathSciNet  Google Scholar 

  26. Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford, UK (2004)

    MATH  Google Scholar 

  27. Soulard, O., Griffond, J., Gréa, B.-J.: Large-scale analysis of self-similar unstably stratified homogeneous turbulence. Phys. Fluids 26, 015110 (2014)

    Article  Google Scholar 

  28. Dimonte, G.: Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Phys. Rev. E 69, 056305 (2004)

    Article  Google Scholar 

  29. Cambon, C., Gréa, B.-J.: The role of directionality on the structure and dynamics of strongly anisotropic turbulent flows. J. Turbul. 14(1), 50–71 (2013)

    Article  MathSciNet  Google Scholar 

  30. Youngs, D.L.: The density ratio dependence of self-similar Rayleigh-Taylor mixing. Philos. Trans. R. Soc. A 371, 20120173 (2013)

    Article  MathSciNet  Google Scholar 

  31. Soulard, O., Griffond, J., Gréa, B.-J.: Influence of the mixing parameter on the second order moments of velocity and concentration in Rayleigh-Taylor turbulence. Phys. Fluids 28(6), 065107 (2016)

    Article  Google Scholar 

  32. Gréa, B.-J., Burlot, A., Griffond, J., Llor, A.: Challenging mix models on transients to self-similarity of unstably stratified homogeneous turbulence. ASME. J. Fluids Eng. 138, 070904–070904 (2016)

    Article  Google Scholar 

  33. Gréa, B.-J., Ebo Adou, A.-H.: What is the final size of a turbulent mixing zone driven by the faraday instability? J. Fluid Mech. (accepted) (2017)

    Google Scholar 

  34. Dimonte, G., Ramaprabhu, P., Andrews, M.: Rayleigh-Taylor instability with complex acceleration history. Phys. Rev. E 76, 046313 (2007)

    Article  Google Scholar 

  35. Ramaprabhu, P., Karkhanis, V., Lawrie, A.G.W.: The Rayleigh-Taylor instability driven by an accel-decel-accel profile. Phys. Fluids (1994–present) 25(11), – (2013)

    Article  Google Scholar 

  36. Chertkov, M.: Phenomenology of Rayleigh-Taylor turbulence. Phys. Rev. Lett. 91(11), 115001 (2003)

    Article  Google Scholar 

  37. Mikaelian, K.O.: Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physica D 36, 343–357 (1989)

    Article  MathSciNet  Google Scholar 

  38. Zhou, Y.: A scaling analysis of turbulent flows driven by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Fluids 13, 538 (2001)

    Article  Google Scholar 

  39. Abarzhi, S.I.: On fundamentals of Rayleigh-Taylor turbulent mixing. Eur. Phys. Lett. 91, 12867 (2010)

    Article  Google Scholar 

  40. Soulard, O.: Implications of the Monin-Yaglom relation for Rayleigh-Taylor turbulence. Phys. Rev. Lett. 109, 254501 (2012)

    Article  Google Scholar 

  41. Verma, M.K., Kumar, A., Pandey, A.: Phenomenology of buoyancy-driven turbulence: recent results. New J. Phys. 19, 025012 (2017)

    Article  Google Scholar 

  42. Cabot, W.H., Cook, A.W.: Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2, 562 (2006)

    Article  Google Scholar 

  43. Dalziel, S.B., Linden, P.F., Youngs, D.L.: Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J. Fluid Mech. 399, 1–48 (1999)

    Article  MathSciNet  Google Scholar 

  44. Soulard, O., Gréa, B.-J.: Influence of zero-modes on the inertial-range anisotropy of Rayleigh-Taylor and unstably stratified homogeneous turbulence. Phys. Rev. Fluids 2, 074603 (2017)

    Article  Google Scholar 

  45. Biferale, L., Procaccia, I.: Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43–164 (2005)

    Article  MathSciNet  Google Scholar 

  46. L’vov, V.S., Procaccia, I., Tiberkevich, V.: Scaling exponents in anisotropic hydrodynamic turbulence. Phys. Rev. E, 67, 026312 (2003)

    Google Scholar 

  47. Soulard, O., Griffond, J.: Inertial-range anisotropy in Rayleigh-Taylor turbulence. Phys. Fluids 24(2), 025101 (2012)

    Article  Google Scholar 

  48. Bos, W.J.T., Touil, H., Bertoglio, J.-P.: Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient. Phys. Fluids 17, 125108 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît-Joseph Gréa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gréa, BJ., Soulard, O. (2019). Incompressible Homogeneous Buoyancy-Driven Turbulence. In: Gorokhovski, M., Godeferd, F. (eds) Turbulent Cascades II. ERCOFTAC Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-12547-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12547-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12546-2

  • Online ISBN: 978-3-030-12547-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics