Rosehip (Rosa canina L.) Oil



Rosehip (Rosa canina L.), is a member of Rosaceae family. The seeds of Rosa canina contain approximately 15% crude oil. Different extraction techniques are widely used to extract the oils from the seeds. The traditional extraction techniques are classified into two fundamental classes: (I) pressing and (II) solvent extraction method. The modern extraction techniques such as ultrasound, microwave, sub- and supercritical fluid extraction are the other useful methods to extract the oil from rosehip seeds. Rosehip oil is considered a valuable oil because the oil contains essential fatty acids, tocopherols, sterols and phenolics with functional properties. Major essential fatty acids are linoleic, linolenic and oleic acids. Additionally, β-sitosterol is the predominant phytosterol compound. A γ-Tocopherol isomer of tocols is the most abundant in rosehip seed oil. The anti-cancer effect takes the first place among the several health-promoting effects of rosehip oil. Moreover, the rosehip oil is generally preferred to use in cosmetics because of its therapeutic effect on skin disorders.


Bioactive compounds Functional properties Anti-cancer Cosmetics 


  1. Barros, L., Carvalho, A. M., & Ferreira, I. C. (2011). Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International, 44(7), 2233–2236.Google Scholar
  2. Barros, L., Carvalho, A. M., Morais, J. S., & Ferreira, I. C. (2010). Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 120(1), 247–254.Google Scholar
  3. Chrubasik, C., Roufogalis, B. D., Müller-Ladner, U., & Chrubasik, S. (2008). A systematic review on the Rosa canina effect and efficacy profiles. Phytotherapy Research, 22(6), 725–733.PubMedGoogle Scholar
  4. De Santana, F. B., Gontijo, L. C., Mitsutake, H., Mazivila, S. J., de Souza, L. M., & Neto, W. B. (2016). Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry, 209, 228–233.PubMedGoogle Scholar
  5. Del Valle, J. M., Bello, S., Thiel, J., Allen, A., & Chordia, L. (2000). Comparison of conventional and supercritical CO2-extracted rosehip oil. Brazilian Journal of Chemical Engineering, 17(3), 335–348.Google Scholar
  6. Demir, N., Yildiz, O., Alpaslan, M., & Hayaloglu, A. A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT- Food Science and Technology, 57(1), 126–133.Google Scholar
  7. Ercisli, S. (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chemistry, 104(4), 1379–1384.Google Scholar
  8. Ercisli, S., Orhan, E., & Esitken, A. (2007). Fatty acid composition of Rosa species seeds in Turkey. Chemistry of Natural Compounds, 43(5), 605–606.Google Scholar
  9. Fromm, M., Bayha, S., Kammerer, D. R., & Carle, R. (2012). Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different Rosaceae species. Journal of Agricultural and Food Chemistry, 60(43), 10733–10742.PubMedGoogle Scholar
  10. Gonzalez, I., Escobar, M., & Olivera, P. (1997). Plasma lipids of golden Syrian hamsters fed dietary rose hip, sunflower, olive and coconut oils. Revista Espanola de Fisiologia, 53(2), 199–204.PubMedGoogle Scholar
  11. Grajzer, M., Prescha, A., Korzonek, K., Wojakowska, A., Dziadas, M., Kulma, A., & Grajeta, H. (2015). Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chemistry, 188, 459–466.PubMedGoogle Scholar
  12. Hosni, K., Kerkenni, A., Medfei, W., Ben Brahim, N., & Sebei, H. (2010). Volatile oil constituents of Rosa canina L.: Quality as affected by the distillation method. Organic Chemistry International. vol. 2010, Article ID 621967, 7 pages, 2010. Scholar
  13. Hosni, K., Zahed, N., Chrif, R., Brahim, N. B., Kallel, M., & Sebei, H. (2011). Volatile oil constituents of Rosa canina L.: Differences related to developmental stages and floral organs. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 145(3), 627–634.Google Scholar
  14. Ilyasoğlu, H. (2014). Characterization of rosehip (Rosa canina L.) seed and seed oil. International Journal of Food Properties, 17(7), 1591–1598.Google Scholar
  15. Jäger, A. K., Eldeen, I. M., & van Staden, J. (2007). COX-1 and-2 activity of rose hip. Phytotherapy Research, 21(12), 1251–1252.PubMedGoogle Scholar
  16. Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5(2), 56–65.PubMedGoogle Scholar
  17. Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables–the millennium’s health. International Journal of Food Science & Technology, 36(7), 703–725.Google Scholar
  18. Kazaz, S., Baydar, H., & Erbas, S. (2009). Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech Journal of Food Sciences, 27(3), 178–184.Google Scholar
  19. Lutz, M., Torres, M., Carreño, P., & González, I. (1993). Comparative effects of rose hip and corn oils on biliary and plasma lipids in rats. Archivos Latinoamericanos de Nutrición, 43(1), 23–27.PubMedGoogle Scholar
  20. Mabellini, A., Ohaco, E., Ochoa, M. R., Kesseler, A. G., Marquez, C. A., & Michelis, A. D. (2011). Chemical and physical characteristics of several wild rose species used as food or food ingredient. International Journal of Industrial Chemistry, 2(3), 158–171.Google Scholar
  21. Machmudah, S., Kawahito, Y., Sasaki, M., & Goto, M. (2007). Supercritical CO2 extraction of rosehip seed oil: Fatty acids composition and process optimization. The Journal of Supercritical Fluids, 41(3), 421–428.Google Scholar
  22. Maddocks-Jennings, W., Wilkinson, J. M., & Shillington, D. (2005). Novel approaches to radiotherapy-induced skin reactions: A literature review. Complementary Therapies in Clinical Practice, 11(4), 224–231.PubMedGoogle Scholar
  23. Nogala-Kalucka, M., Rudzinska, M., Zadernowski, R., Siger, A., & Krzyzostaniak, I. (2010). Phytochemical content and antioxidant properties of seeds of unconventional oil plants. Journal of the American Oil Chemists’ Society, 87(12), 1481–1487.Google Scholar
  24. Nowak, R. (2005). Fatty acids composition in fruits of wild rose species. Acta Societatis Botanicorum Poloniae, 74(3), 229–235.Google Scholar
  25. Özcan, M. (2002). Nutrient composition of rose (Rosa canina L.) seed and oils. Journal of Medicinal Food, 5(3), 137–140.PubMedGoogle Scholar
  26. Özel, M., & Clifford, A. A. (2004). Superheated water extraction of fragrance compounds from Rosa canina. Flavour and Fragrance Journal, 19(4), 354–359.Google Scholar
  27. Patel, S. (2013). Rose hips as complementary and alternative medicine: Overview of the present status and prospects. Mediterranean Journal of Nutrition and Metabolism, 6(2), 89–97.Google Scholar
  28. Patel, S. (2017). Rose hip as an underutilized functional food: Evidence-based review. Trends in Food Science & Technology, 63, 29–38.Google Scholar
  29. Prescha, A., Grajzer, M., Dedyk, M., & Grajeta, H. (2014). The antioxidant activity and oxidative stability of cold-pressed oils. Journal of the American Oil Chemists’ Society, 91(8), 1291–1301.PubMedPubMedCentralGoogle Scholar
  30. Salgın, U., Salgın, S., Ekici, D. D., & UludaĿ, G. (2016). Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction. The Journal of Supercritical Fluids, 118, 194–202.Google Scholar
  31. Shabykin, G. P., & Godorazhi, A. I. (1967). A polyvitamin preparation of fat-soluble vitamins (carotolin) and rose hip oil in the treatment of certain dermatoses. Vestnik Dermatologii i Venerologii, 41(4), 71–73.PubMedGoogle Scholar
  32. Smith, T. J. (2000). Squalene: potential chemopreventive agent. Expert Opinion on Investigational Drugs, 9(8), 1841–1848.Google Scholar
  33. Szentmihályi, K., Vinkler, P., Lakatos, B., Illés, V., & Then, M. (2002). Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresource Technology, 82(2), 195–201.PubMedGoogle Scholar
  34. Topkafa, M. (2016). Evaluation of chemical properties of cold pressed onion, okra, rosehip, safflower and carrot seed oils: Triglyceride, fatty acid and tocol compositions. Analytical Methods 8, (21), 4220–4225.Google Scholar
  35. Tumbas, V. T., Čanadanović-Brunet, J. M., Četojević-Simin, D. D., Ćetković, G. S., Ðilas, S. M., & Gille, L. (2012). Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. Journal of the Science of Food and Agriculture, 92(6), 1273–1281.PubMedGoogle Scholar
  36. Uggla, M., Gao, X., & Werlemark, G. (2003). Variation among and within dogrose taxa (Rosa sect. caninae) in fruit weight, percentages of fruit flesh and dry matter, and vitamin C content. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 53(3), 147–155.Google Scholar
  37. Wenzig, E. M., Widowitz, U., Kunert, O., Chrubasik, S., Bucar, F., Knauder, E., & Bauer, R. (2008). Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations. Phytomedicine, 15(10), 826–835.PubMedGoogle Scholar
  38. Zlatanov, M. D. (1999). Lipid composition of Bulgarian chokeberry, black currant and rose hip seed oils. Journal of the Science of Food and Agriculture, 79(12), 1620–1624.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Food EngineeringBalıkesir UniversityBalıkesirTurkey
  2. 2.Department of Mechanical EngineeringAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations