Skip to main content

Nanoparticle-Based Diamond Electrodes

  • Chapter
  • First Online:
  • 1311 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

This chapter reviews the construction, modification, and physical characteristics of two types of diamond electrodes: nanoparticle-modified diamond electrodes (NMDE) and detonation nanodiamond-based electrodes (DNDE). These particular types of diamond electrodes show great promise for improving the performance of diamond electrodes via the incorporation of nano-scale chemistry at their surfaces. The construction of both types of electrodes is reviewed, along with the resultant physical and electronic effects. The methods reviewed here are particularly applicable for electroanalytical and electrocatalytic applications of nanoparticle-based diamond electrodes. A brief review of progress on the interactions between metals and diamond at nanoparticle-based electrodes is also included. Finally, an outline of the present state-of-the art research in this field is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.G. Compton, J.S. Foord, F. Marken, Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15(17), 1349–1363 (2003). https://doi.org/10.1002/elan.200302830

    Article  CAS  Google Scholar 

  2. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009). https://doi.org/10.1080/10408430902831987

    Article  CAS  Google Scholar 

  3. S. Fierro, Y. Einaga, Advances in electrochemical biosensing using boron doped diamond microelectrode, in Novel Aspects of Diamond: From Growth to Applications, vol. 121, ed. by N. Yang (Springer, Berlin, 2015), pp. 295–318

    Google Scholar 

  4. X.F. Chen, W.J. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46(3), 734–760 (2017). https://doi.org/10.1039/c6cs00109b

    Article  CAS  Google Scholar 

  5. T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Electroanalytical application of modified diamond electrodes. Diam. Relat. Mater. 13(11), 2003–2008 (2004). https://doi.org/10.1016/j.diamond.2004.07.004

    Article  CAS  Google Scholar 

  6. N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review. Carbon 99(Supplement C), 90–110 (2016). DOI:https://doi.org/10.1016/j.carbon.2015.11.061

  7. J. Radjenovic, D.L. Sedlak, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49(19), 11292–11302 (2015). https://doi.org/10.1021/acs.est.5b02414

    Article  CAS  Google Scholar 

  8. H. Sarkka, A. Bhatnagar, M. Sillanpaa, Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 754, 46–56 (2015). https://doi.org/10.1016/j.jelechem.2015.06.016

    Article  CAS  Google Scholar 

  9. P.R.F. da Costa, E.V. dos Santos, J.M. Peralta-Hernandez, G.R. Salazar-Banda, D.R. da Silva, C.A. Martinez-Huitle, modified diamond electrodes for electrochemical systems for energy conversion and storage, in Novel Aspects of Diamond: From Growth to Applications, vol. 121, ed. by N. Yang (Springer, Berlin, 2015), pp. 205–235

    Google Scholar 

  10. K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 365(1861), 2845–2861 (2007). https://doi.org/10.1098/rsta.2007.0005

    Article  CAS  Google Scholar 

  11. J. Wolters, G. Kewes, A.W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, O. Benson, Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities. Physica Status Solidi (b) 249(5), 918–24 (2012). https://doi.org/10.1002/pssb.201100156

  12. R.B. Liu, W. Yao, L.J. Sham, Quantum computing by optical control of electron spins. Adv. Phys. 59(5), 703–802 (2010). https://doi.org/10.1080/00018732.2010.505452

    Article  CAS  Google Scholar 

  13. X. Rong, D.W. Lu, X. Kong, J.P. Geng, Y. Wang, F.Z. Shi, C.K. Duan, J.F. Du, Harnessing the power of quantum systems based on spin magnetic resonance: from ensembles to single spins. Adv. Phys. 2(1), 125–68 (2017). https://doi.org/10.1080/23746149.2016.1266914

  14. V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 70(7), 607 (2001). https://doi.org/10.1070/RC2001v070n07ABEH000665

    Article  CAS  Google Scholar 

  15. K.I.B. Eguiluz, J.M. Peralta-Hernández, A. Hernández-Ramírez, J.L. Guzmán-Mar, L. Hinojosa-Reyes, C.A. Martínez-Huitle, G.R. Salazar-Banda, The use of diamond for energy conversion system applications: a review. Int. J. Electrochem. 2012, 20 (2012). https://doi.org/10.1155/2012/675124

    Article  CAS  Google Scholar 

  16. A. Kraft, Conductive diamond layers. Production, properties, and possible uses of new electrode materials. Jahrb. Oberflaechentech. 61, 109–20 (2005)

    Google Scholar 

  17. H. Yuen Yung, C. Chia-Liang, C. Huan-Cheng, Nanodiamonds for optical bioimaging. J. Phys. D Appl. Phys. 43(37), 374021 (2010). https://doi.org/10.1088/0022-3727/43/37/374021

    Article  CAS  Google Scholar 

  18. J. Zang, L. Dong, Y.-H. Wang, Review on electrochemical property and surface modifications of nanodiamond powders. Yanshan da xue xue bao 2, 002 (2012)

    Google Scholar 

  19. N. Fujimori, T. Imai, A. Doi, Characterization of conducting diamond films. Vacuum 36(1), 99–102 (1986). https://doi.org/10.1016/0042-207X(86)90279-4

    Article  CAS  Google Scholar 

  20. K.E. Toghill, R.G. Compton, Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis 22(17–18), 1947–1956 (2010). https://doi.org/10.1002/elan.201000072

    Article  CAS  Google Scholar 

  21. A. Kraft, Doped diamond electrodes. New trends and developments. Jahrb. Oberflaechentech. 63, 85–95 (2007)

    Google Scholar 

  22. I. Novoselova, E. Fedorishena, E. Panov, Electrodes from diamond and diamond-like materials for electrochemical applications. J. Superhard Mater. 29(1), 24–39 (2007). https://doi.org/10.3103/S1063457607010042

    Article  Google Scholar 

  23. Y. Zhou, J. Zhi, The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5), 1189–1196 (2009). https://doi.org/10.1016/j.talanta.2009.05.026

    Article  CAS  Google Scholar 

  24. D. Yamada, T.A. Ivandini, M. Komatsu, A. Fujishima, Y. Einaga, Anodic stripping voltammetry of inorganic species of as 3 + and as 5 + at gold-modified boron doped diamond electrodes. J. Electroanal. Chem. 615(2), 145–153 (2008). https://doi.org/10.1016/j.jelechem.2007.12.004

    Article  CAS  Google Scholar 

  25. L.A. Hutton, M. Vidotti, A.N. Patel, M.E. Newton, P.R. Unwin, J.V. Macpherson, Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. 115(5), 1649–1658 (2010). https://doi.org/10.1021/jp109526b

    Article  CAS  Google Scholar 

  26. G.R. Salazar-Banda, K.I. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Commun. 9(1), 59–64 (2007). https://doi.org/10.1016/j.elecom.2006.08.038

    Article  CAS  Google Scholar 

  27. L. Bian, Y. Wang, J. Zang, F. Meng, Y. Zhao, Detonation-synthesized nanodiamond as a stable support of Pt electrocatalyst for methanol electrooxidation. Int. J. Electrochem. Sci. 7(8), 7295–303 (2012)

    Google Scholar 

  28. S. Szunerits, R. Boukherroub, Investigation of the electrocatalytic activity of boron-doped diamond electrodes modified with palladium or gold nanoparticles for oxygen reduction reaction in basic medium. C. R. Chim. 11(9), 1004–1009 (2008). https://doi.org/10.1016/j.crci.2008.01.015

    Article  CAS  Google Scholar 

  29. S.R. Belding, F.W. Campbell, E.J. Dickinson, R.G. Compton, Nanoparticle-modified electrodes. Phys. Chem. Chem. Phys. 12(37), 11208–11221 (2010). https://doi.org/10.1039/C0CP00233J

    Article  CAS  Google Scholar 

  30. K.B. Holt, C. Ziegler, D.J. Caruana, J. Zang, E.J. Millán-Barrios, J. Hu, J.S. Foord, Redox properties of undoped 5 nm diamond nanoparticles. Phys. Chem. Chem. Phys. 10(2), 303–310 (2008). https://doi.org/10.1039/B711049A

    Article  CAS  Google Scholar 

  31. J.-S. Gao, T. Arunagiri, J.-J. Chen, P. Goodwill, O. Chyan, J. Perez, D. Golden, Preparation and characterization of metal nanoparticles on a diamond surface. Chem. Mater. 12(11), 3495–3500 (2000). https://doi.org/10.1021/cm000465o

    Article  CAS  Google Scholar 

  32. F. Gao, N. Yang, W. Smirnov, H. Obloh, C.E. Nebel, Size-controllable and homogeneous platinum nanoparticles on diamond using wet chemically assisted electrodeposition. Electrochim. Acta 90, 445–451 (2013). https://doi.org/10.1016/j.electacta.2012.12.050

    Article  CAS  Google Scholar 

  33. J. Hu, X. Lu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt nanoparticles on diamond substrates. Physica Status Solidi (a) 206(9), 2057–62 (2009). https://doi.org/10.1002/pssa.200982226

  34. F. Montilla, E. Morallon, I. Duo, C. Comninellis, J. Vazquez, Platinum particles deposited on synthetic boron-doped diamond surfaces. Appl. Methanol Oxid. Electrochim. Acta 48(25), 3891–3897 (2003). https://doi.org/10.1016/S0013-4686(03)00526-7

    Article  CAS  Google Scholar 

  35. G. Sine, I. Duo, B.E. Roustom, G. Foti, C. Comninellis, Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis. J. Appl. Electrochem. 36(8), 847–862 (2006). https://doi.org/10.1007/s10800-006-9159-2

    Article  CAS  Google Scholar 

  36. O. Enea, B. Riedo, G. Dietler, AFM study of Pt clusters electrochemically deposited onto boron-doped diamond films. Nano Lett. 2(3), 241–244 (2002). https://doi.org/10.1021/nl015666l

    Article  CAS  Google Scholar 

  37. I. Gonzalez-Gonzalez, D. Tryk, C.R. Cabrera, Polycrystalline boron-doped diamond films as supports for methanol oxidation electrocatalysts. Diam. Relat. Mater. 15(2), 275–278 (2006). https://doi.org/10.1016/j.diamond.2005.08.037

    Article  CAS  Google Scholar 

  38. S. Hrapovic, Y. Liu, J.H. Luong, Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite. Anal. Chem. 79(2), 500–507 (2007). https://doi.org/10.1021/ac061528a

    Article  CAS  Google Scholar 

  39. B. Rismetov, T.A. Ivandini, E. Saepudin, Y. Einaga, Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam. Relat. Mater. 48(Supplement C), 88–95 (2014). https://doi.org/10.1016/j.diamond.2014.07.003

  40. Y. Hernández-Lebrón, C.R. Cabrera, Square wave voltammetry restructuring of platinum nanoparticle at boron doped diamond electrode for enhanced ammonia oxidation. J. Electroanal. Chem. 793(Supplement C), 174–83 (2017). DOI:https://doi.org/10.1016/j.jelechem.2016.12.036

  41. Y. Hernández-Lebrón, L. Cunci, C.R. Cabrera, Ammonia oxidation at electrochemically platinum-modified microcrystalline and polycrystalline boron-doped diamond electrodes. Electrocatalysis 7(2), 184–192 (2016). https://doi.org/10.1007/s12678-015-0295-5

    Article  CAS  Google Scholar 

  42. L. Hutton, M.E. Newton, P.R. Unwin, J.V. Macpherson, Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal. Chem. 81(3), 1023–1032 (2008). https://doi.org/10.1021/ac8020906

    Article  CAS  Google Scholar 

  43. L.C.S. Figueiredo-Filho, E.R. Sartori, O. Fatibello-Filho, Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles. Anal. Methods 7(2), 643–649 (2015). https://doi.org/10.1039/C4AY02182G

    Article  CAS  Google Scholar 

  44. A.I. Căciuleanu, T. Spătaru, L. Preda, M. Anastasescu, P. Osiceanu, C. Munteanu, R.D. Bărăţoiu, A.A. Iovescu, N. Spătaru, Platinum–carbon electrocatalytic composites via liposome-directed electrodeposition at conductive diamond. Int. J. Hydrog. Energy 41(47), 22529–22537 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.226

    Article  CAS  Google Scholar 

  45. M. Medina-Sánchez, C.C. Mayorga-Martinez, T. Watanabe, T.A. Ivandini, Y. Honda, F. Pino, K. Nakata, A. Fujishima, Y. Einaga, A. Merkoçi, Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens. Bioelectron. 75, 365–374 (2016). https://doi.org/10.1016/j.bios.2015.08.058

    Article  CAS  Google Scholar 

  46. G. Siné, D. Smida, M. Limat, G. Foti, C. Comninellis, Microemulsion synthesized pt∕ru∕sn nanoparticles on bdd for alcohol electro-oxidation. J. Electrochem. Soc. 154(2), B170–B174 (2007). https://doi.org/10.1149/1.2400602

    Article  CAS  Google Scholar 

  47. T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide. Diam. Relat. Mater. 14(11), 2133–2138 (2005). https://doi.org/10.1016/j.diamond.2005.08.022

    Article  CAS  Google Scholar 

  48. T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Electrochemical detection of arsenic (III) using iridium-implanted boron-doped diamond electrodes. Anal. Chem. 78(18), 6291–6298 (2006). https://doi.org/10.1021/ac0519514

    Article  CAS  Google Scholar 

  49. K. Panda, K.J. Sankaran, E. Inami, Y. Sugimoto, N.H. Tai, I.-N. Lin, Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films. Appl. Phys. Lett. 105(16), 163109 (2014). https://doi.org/10.1063/1.4898571

    Article  CAS  Google Scholar 

  50. K.J. Sankaran, P. Kalpataru, S. Balakrishnan, N.-H. Tai, I.N. Lin, Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films. J. Mater. Chem. C 3(11), 2632–2641 (2015). https://doi.org/10.1039/C4TC02334J

    Article  CAS  Google Scholar 

  51. K. Panda, E. Inami, Y. Sugimoto, K.J. Sankaran, I.N. Lin, Straight imaging and mechanism behind grain boundary electron emission in Pt-doped ultrananocrystalline diamond films. Carbon 111(Supplement C), 8–17 (2017). https://doi.org/10.1016/j.carbon.2016.09.062

  52. D.K. Belghiti, M. Zadeh-Habchi, E. Scorsone, P. Bergonzo, Boron doped diamond/metal nanoparticle catalysts hybrid electrode array for the detection of pesticides in tap water, in Proceedings of the 30th Anniversary Eurosensors Conference—Eurosensors, vol. 168, ed. by I. Barsony, Z. Zolnai, G. Battistig (Elsevier Science Bv, Amsterdam, 2016), pp. 428–31

    Google Scholar 

  53. X. Lyu, J.P. Hu, J.S. Foord, C.S. Lou, W.Q. Zhang, Synthesis and electrocatalytic performance of BDD-Supported platinum nanoparticles. J. Mater. Eng. Perform. 24(2), 1031–1037 (2015). https://doi.org/10.1007/s11665-014-1317-9

    Article  CAS  Google Scholar 

  54. J. Wang, G.M. Swain, Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis preliminary studies of the oxygen-reduction reaction. J. Electrochem. Soc. 150(1), E24–E32 (2003). https://doi.org/10.1149/1.1524612

    Article  CAS  Google Scholar 

  55. Bennett, J. A.; Show, Y.; Wang, S.; Swain, G. M., Pulsed galvanostatic deposition of Pt particles on microcrystalline and nanocrystalline diamond thin-film electrodes I. Characterization of as-deposited metal/diamond surfaces. J. Electrochem. Soc. 152(5), E184–E92 (2005). https://doi.org/10.1149/1.1890745

  56. G. Salazar-Banda, H. Suffredini, L. Avaca, Improved stability of PtOx sol-gel-modified diamond electrodes covered with a Nafion® film. J. Braz. Chem. Soc. 16(5), 903–906 (2005). https://doi.org/10.1590/S0103-50532005000600003

    Article  CAS  Google Scholar 

  57. H.B. Suffredini, G.R. Salazar-Banda, S.T. Tanimoto, M.L. Calegaro, S.A. Machado, L.A. Avaca, AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the Sol-Gel method. J. Braz. Chem. Soc. 17(2), 257–264 (2006). https://doi.org/10.1590/S0103-50532006000200007

    Article  CAS  Google Scholar 

  58. G.R. Salazar-Banda, H.B. Suffredini, L.A. Avaca, S.A.S. Machado, Methanol and ethanol electro-oxidation on Pt–SnO2 and Pt–Ta2O5 sol-gel-modified boron-doped diamond surfaces. Mater. Chem. Phys. 117(2–3), 434–442 (2009). https://doi.org/10.1016/j.matchemphys.2009.06.027

    Article  CAS  Google Scholar 

  59. F. Gao, R. Thomann, C.E. Nebel, Aligned Pt-diamond core-shell nanowires for electrochemical catalysis. Electrochem. Commun. 50, 32–35 (2015). https://doi.org/10.1016/j.elecom.2014.11.006

    Article  CAS  Google Scholar 

  60. J. Kim, Y.S. Chun, S.K. Lee, D.S. Lim, Improved electrode durability using a boron-doped diamond catalyst support for proton exchange membrane fuel cells. RSC Adv. 5(2), 1103–1108 (2015). https://doi.org/10.1039/c4ra13389g

    Article  CAS  Google Scholar 

  61. K.E. Toghill, L. Xiao, G.G. Wildgoose, R.G. Compton, Electroanalytical determination of cadmium (II) and lead (II) using an antimony nanoparticle modified boron-doped diamond electrode. Electroanalysis 21(10), 1113–1118 (2009). https://doi.org/10.1002/elan.200904547

    Article  CAS  Google Scholar 

  62. C.W. Foster, A.P. de Souza, J.P. Metters, M. Bertotti, C.E. Banks, Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst 140(22), 7598–7612 (2015). https://doi.org/10.1039/C5AN01692D

    Article  CAS  Google Scholar 

  63. K.E. Toghill, G.G. Wildgoose, A. Moshar, C. Mulcahy, R.G. Compton, The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium (II) and lead (II). Electroanalysis 20(16), 1731–1737 (2008). https://doi.org/10.1002/elan.200804277

    Article  CAS  Google Scholar 

  64. A.O. Simm, X. Ji, C.E. Banks, M.E. Hyde, R.G. Compton, AFM studies of metal deposition: instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. ChemPhysChem 7(3), 704–709 (2006). https://doi.org/10.1002/cphc.200500557

    Article  CAS  Google Scholar 

  65. T.-L. Wee, B.D. Sherman, D. Gust, A.L. Moore, T.A. Moore, Y. Liu, J.C. Scaiano, Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133(42), 16742–16745 (2011). https://doi.org/10.1021/ja206280g

    Article  CAS  Google Scholar 

  66. N.R. Stradiotto, K.E. Toghill, L. Xiao, A. Moshar, R.G. Compton, The fabrication and characterization of a nickel nanoparticle modified boron doped diamond electrode for electrocatalysis of primary alcohol oxidation. Electroanalysis 21(24), 2627–2633 (2009). https://doi.org/10.1002/elan.200900325

    Article  CAS  Google Scholar 

  67. S. Treetepvijit, A. Preechaworapun, N. Praphairaksit, S. Chuanuwatanakul, Y. Einaga, O. Chailapakul, Use of nickel implanted boron-doped diamond thin film electrode coupled to HPLC system for the determination of tetracyclines. Talanta 68(4), 1329–1335 (2006). https://doi.org/10.1016/j.talanta.2005.07.047

    Article  CAS  Google Scholar 

  68. V. Sáez, J. González-García, F. Marken, Active catalysts of sonoelectrochemically prepared iron metal nanoparticles for the electroreduction of chloroacetates. Phys. Procedia 3(1), 105–109 (2010). https://doi.org/10.1016/j.phpro.2010.01.015

    Article  CAS  Google Scholar 

  69. L.A. Hutton, M.E. Newton, P.R. Unwin, J.V. Macpherson, Factors controlling stripping voltammetry of lead at polycrystalline boron doped diamond electrodes: new insights from high-resolution microscopy. Anal. Chem. 83(3), 735–745 (2011). https://doi.org/10.1021/ac101626s

    Article  CAS  Google Scholar 

  70. L.Y. Jiang, J.P. Hu, J.S. Foord, Electroanalysis of hydrogen peroxide at boron doped diamond electrode modified by silver nanoparticles and haemoglobin. Electrochim. Acta 176, 488–496 (2015). https://doi.org/10.1016/j.electacta.2015.07.013

    Article  CAS  Google Scholar 

  71. S. Nantaphol, O. Chailapakul, W. Siangproh, A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal. Chim. Acta 891, 136–143 (2015). https://doi.org/10.1016/j.aca.2015.08.007

    Article  CAS  Google Scholar 

  72. N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K.I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, C. Terashima, Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci. Rep. 6, 9 (2016). https://doi.org/10.1038/srep38010

    Article  CAS  Google Scholar 

  73. C.M. Welch, C.E. Banks, G. Richard, The detection of nitrate using in-situ copper nanoparticle deposition at a boron doped diamond electrode. Anal. Sci. 21(12), 1421–30 (2005). https://doi.org/10.2116/analsci.21.1421

  74. C.K. Mavrokefalos, G.W. Nelson, C.G. Poll, R.G. Compton, J.S. Foord, Electrochemical aspects of Pt–Cu and Cu modified boron-doped diamond. Physica Status Solidi A-Appl. Mat. 212(11), 2559–2567 (2015). https://doi.org/10.1002/pssa.201532163

    Article  CAS  Google Scholar 

  75. K.R. Saravanan, M. Chandrasekaran, V. Suryanarayanan, Efficient electrocarboxylation of benzophenone on silver nanoparticles deposited boron doped diamond electrode. J. Electroanal. Chem. 757, 18–22 (2015). https://doi.org/10.1016/j.jelechem.2015.08.033

    Article  CAS  Google Scholar 

  76. H.S. Panglipur, T.A. Ivandini, R. Wibowo, Y. Einaga, Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conf. Proc. 1729(1), 020047 (2016). https://doi.org/10.1063/1.4946950

    Article  CAS  Google Scholar 

  77. N. Roy, Y. Shibano, C. Terashima, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode. ChemElectroChem 3(7), 1044–1047 (2016). https://doi.org/10.1002/celc.201600105

    Article  CAS  Google Scholar 

  78. C.M. Welch, A.O. Simm, R.G. Compton, Oxidation of electrodeposited copper on boron doped diamond in acidic solution: manipulating the size of copper nanoparticles using voltammetry. Electroanalysis 18(10), 965–970 (2006). https://doi.org/10.1002/elan.200603493

    Article  CAS  Google Scholar 

  79. B. El Roustom, G. Fóti, C. Comninellis, Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrode. Electrochem. Commun. 7(4), 398–405 (2005). https://doi.org/10.1016/j.elecom.2005.02.014

    Article  CAS  Google Scholar 

  80. I. Yagi, T. Ishida, K. Uosaki, Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem. Commun. 6(8), 773–779 (2004). https://doi.org/10.1016/j.elecom.2004.05.025

    Article  CAS  Google Scholar 

  81. Y. Ma, J. Liu, H. Li, Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens. Bioelectron. 92(Supplement C), 21–5 (2017). https://doi.org/10.1016/j.bios.2017.01.041

  82. M. Li, G. Zhao, R. Geng, H. Hu, Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface. Bioelectrochemistry 74(1), 217–221 (2008). https://doi.org/10.1016/j.bioelechem.2008.08.004

    Article  CAS  Google Scholar 

  83. R.-H. Tian, T.N. Rao, Y. Einaga, J.-F. Zhi, Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces. Chem. Mater. 18(4), 939–945 (2006). https://doi.org/10.1021/cm0519481

    Article  CAS  Google Scholar 

  84. T.A. Ivandini, Harmesa, E. Saepudin, Y. Einaga, Yeast-based biochemical oxygen demand sensors using Gold-modified boron-doped diamond electrodes. Anal. Sci. 31(7), 643–649 (2015). https://doi.org/10.2116/analsci.31.643

  85. W.T. Wahyuni, T.A. Ivandini, E. Saepudin, Y. Einaga, Development of neuraminidase detection using gold nanoparticles Boron-Doped diamond electrodes. Anal. Biochem. 497, 68–75 (2016). https://doi.org/10.1016/j.ab.2015.12.003

    Article  CAS  Google Scholar 

  86. T.A. Ivandini, E. Saepudin, H. Wardah, Harmesa, N. Dewangga, Y. Einaga, Development of a biochemical oxygen demand sensor using Gold-Modified boron doped diamond electrodes. Anal. Chem. 84(22), 9825–9832 (2012). https://doi.org/10.1021/ac302090y

  87. Y. Zhang, V. Suryanarayanan, I. Nakazawa, S. Yoshihara, T. Shirakashi, Electrochemical behavior of Au nanoparticle deposited on as-grown and O-terminated diamond electrodes for oxygen reduction in alkaline solution. Electrochim. Acta 49(28), 5235–5240 (2004). https://doi.org/10.1016/j.electacta.2004.07.005

    Article  CAS  Google Scholar 

  88. L. Rassaei, M. Sillanpää, R.W. French, R.G. Compton, F. Marken, Arsenite determination in phosphate media at electroaggregated gold nanoparticle deposits. Electroanalysis 20(12), 1286–1292 (2008). https://doi.org/10.1002/elan.200804226

    Article  CAS  Google Scholar 

  89. J. Svanberg-Larsson, G.W. Nelson, S.E. Steinvall, B.F. Leo, E. Brooke, D.J. Payne, J.S. Foord, A comparison of explicitly-terminated diamond electrodes decorated with gold nanoparticles. Electroanalysis 28(1), 88–95 (2016). https://doi.org/10.1002/elan.201500442

    Article  CAS  Google Scholar 

  90. K.B. Holt, G. Sabin, R.G. Compton, J.S. Foord, F. Marken, Reduction of tetrachloroaurate(III) at Boron-Doped diamond electrodes: gold deposition versus gold colloid formation. Electroanalysis 14(12), 797–803 (2002). https://doi.org/10.1002/1521-4109(200206)14:12%3c797:AID-ELAN797%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  91. Á.I. López-Lorente, J. Izquierdo, C. Kranz, B. Mizaikoff, Boron-doped diamond modified with gold nanoparticles for the characterization of bovine serum albumin protein. Vib. Spectrosc. 91(Supplement C), 147–56 (2017). https://doi.org/10.1016/j.vibspec.2016.10.010

  92. S. Chai, Y. Wang, Y.-N. Zhang, M. Liu, Y. Wang, G. Zhao, Selective electrocatalytic degradation of odorous mercaptans derived from S-Au bond recognition on a dendritic gold/boron-doped diamond composite electrode. Environ. Sci. Technol. 51(14), 8067–8076 (2017). https://doi.org/10.1021/acs.est.7b00393

    Article  CAS  Google Scholar 

  93. C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G. Jones, R.G. Compton, The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131(1), 106–110 (2006). https://doi.org/10.1039/B513751A

    Article  CAS  Google Scholar 

  94. C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G. Jones, R.G. Compton, Nano-Electrochemical detection of hydrogen or protons using palladium nanoparticles: distinguishing surface and bulk hydrogen. ChemPhysChem 7(5), 1081–1085 (2006). https://doi.org/10.1002/cphc.200500571

    Article  CAS  Google Scholar 

  95. C.K. Mavrokefalos, M. Hasan, W. Khunsin, M. Schmidt, S.A. Maier, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochemically modified boron-doped diamond electrode with Pd and Pd-Sn nanoparticles for ethanol electrooxidation. Electrochimica Acta 243(Supplement C), 310–319 (2017). https://doi.org/10.1016/j.electacta.2017.05.039

  96. G. Siné, G. Foti, C. Comninellis, Boron-doped diamond (BDD)-supported Pt/Sn nanoparticles synthesized in microemulsion systems as electrocatalysts of ethanol oxidation. J. Electroanal. Chem. 595(2), 115–124 (2006). https://doi.org/10.1016/j.jelechem.2006.07.012

    Article  CAS  Google Scholar 

  97. G. Siné, C. Comninellis, Nafion®-assisted deposition of microemulsion-synthesized platinum nanoparticles on BDD: activation by electrogenerated OH radicals. Electrochim. Acta 50(11), 2249–2254 (2005). https://doi.org/10.1016/j.electacta.2004.10.008

    Article  CAS  Google Scholar 

  98. X. Lu, J. Hu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt–Ru on diamond electrodes for the electrooxidation of methanol. J. Electroanal. Chem. 654(1), 38–43 (2011). https://doi.org/10.1016/j.jelechem.2011.01.034

    Article  CAS  Google Scholar 

  99. B. El Roustom, G. Sine, G. Foti, C. Comninellis, A novel method for the preparation of bi-metallic (Pt–Au) nanoparticles on boron doped diamond (BDD) substrate: application to the oxygen reduction reaction. J. Appl. Electrochem. 37(11), 1227–1236 (2007). https://doi.org/10.1007/s10800-007-9359-4

    Article  CAS  Google Scholar 

  100. S. Nantaphol, T. Watanabe, N. Nomura, W. Siangproh, O. Chailapakul, Y. Einaga, Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens. Bioelectron. 98, 76–82 (2017). https://doi.org/10.1016/j.bios.2017.06.034

    Article  CAS  Google Scholar 

  101. S. Ferro, A. De Battisti, Electrocatalysis and chlorine evolution reaction at ruthenium dioxide deposited on conductive diamond. J. Phys. Chem. B 106(9), 2249–2254 (2002). https://doi.org/10.1021/jp012195i

    Article  CAS  Google Scholar 

  102. T. Spătaru, L. Preda, P. Osiceanu, C. Munteanu, M. Marcu, C. Lete, N. Spătaru, A. Fujishima, Electrochemical deposition of Pt–RuO (x) a < …nH(2)O composites on conductive diamond and its application to methanol oxidation in acidic media. Electrocatalysis 7(2), 140–148 (2016). https://doi.org/10.1007/s12678-015-0292-8

  103. L. Chen, J. Hu, J.S. Foord, Electrodeposition of a Pt–PrO2 − x electrocatalyst on diamond electrodes for the oxidation of methanol. Physica Status Solidi (a) 209(9), 1792–1796 (2012). https://doi.org/10.1002/pssa.201200049

  104. M. Braiek, Y. Yang, C. Farre, C. Chaix, F. Bessueille, A. Baraket, A. Errachid, A.D. Zhang, N. Jaffrezic-Renault, Boron-doped diamond electrodes modified with Fe3O4@Au magnetic nanocomposites as sensitive platform for detection of a cancer biomarker, Interleukin-8. Electroanalysis 28(8), 1810–1816 (2016). https://doi.org/10.1002/elan.201600060

    Article  CAS  Google Scholar 

  105. C. Terashima, T.N. Rao, B.V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications. J. Electroanal. Chem. 544, 65–74 (2003). https://doi.org/10.1016/S0022-0728(03)00066-4

    Article  CAS  Google Scholar 

  106. F. Marken, A.S. Bhambra, D.-H. Kim, R.J. Mortimer, S.J. Stott, Electrochemical reactivity of TiO2 nanoparticles adsorbed onto boron-doped diamond surfaces. Electrochem. Commun. 6(11), 1153–1158 (2004). https://doi.org/10.1016/j.elecom.2004.09.006

    Article  CAS  Google Scholar 

  107. T. Spătaru, L. Preda, C. Munteanu, A.I. Căciuleanu, N. Spătaru, A. Fujishima, Influence of boron-doped diamond surface termination on the characteristics of titanium dioxide anodically deposited in the presence of a surfactant. J. Electrochem. Soc. 162(8), H535–H540 (2015). https://doi.org/10.1149/2.0741508jes

    Article  CAS  Google Scholar 

  108. F. Espinola-Portilla, R. Navarro-Mendoza, S. Gutiérrez-Granados, U. Morales-Muñoz, E. Brillas-Coso, J.M. Peralta-Hernández, A simple process for the deposition of TiO2 onto BDD by electrophoresis and its application to the photoelectrocatalysis of Acid Blue 80 dye. J. Electroanal. Chem. 802(Supplement C), 57–63. (2017). https://doi.org/10.1016/j.jelechem.2017.08.041

  109. K.J. McKenzie, F. Marken, Electrochemical characterization of hydrous ruthenium oxide nanoparticle decorated boron-doped diamond electrodes. Electrochem. Solid-State Lett. 5(9), E47–E50 (2002). https://doi.org/10.1149/1.1497515

    Article  CAS  Google Scholar 

  110. G.C. Sedenho, J.L. da Silva, M.A. Beluomini, A.C. de Sá, N.R. Stradiotto, Determination of electroactive organic acids in sugarcane vinasse by high performance anion-exchange chromatography with pulsed amperometric detection using a nickel nanoparticle modified boron-doped diamond. Energy Fuels 31(3), 2865–2870 (2017). https://doi.org/10.1021/acs.energyfuels.6b02783

    Article  CAS  Google Scholar 

  111. G.C. Sedenho, P.T. Lee, H.S. Toh, C. Salter, C. Johnston, N.R. Stradiotto, R.G. Compton, Nanoelectrocatalytic oxidation of lactic acid using nickel nanoparticles. J. Phys. Chem. C 119(12), 6896–6905 (2015). https://doi.org/10.1021/acs.jpcc.5b00335

    Article  CAS  Google Scholar 

  112. A.J. Saterlay, S.J. Wilkins, K.B. Holt, J.S. Foord, R.G. Compton, F. Marken, Lead dioxide deposition and electrocatalysis at highly boron-doped diamond electrodes in the presence of ultrasound. J. Electrochem. Soc. 148(2), E66–E72 (2001). https://doi.org/10.1149/1.1339874

    Article  CAS  Google Scholar 

  113. C.K. Mavrokefalos, M. Hasan, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochemically deposited Cu2O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation. Appl. Surf. Sci. 408, 125–134 (2017). https://doi.org/10.1016/j.apsusc.2017.02.148

    Article  CAS  Google Scholar 

  114. P. Gan, J.S. Foord, R.G. Compton, Surface modification of boron-doped diamond with microcrystalline copper phthalocyanine: oxygen reduction catalysis. ChemistryOpen 4(5), 606–612 (2015). https://doi.org/10.1002/open.201500075

    Article  CAS  Google Scholar 

  115. F. Shang, J.D. Glennon, J.H. Luong, Glucose oxidase entrapment in an electropolymerized poly (tyramine) film with sulfobutylether-β-cyclodextrin on platinum nanoparticle modified boron-doped diamond electrode. J. Phys. Chem. C 112(51), 20258–20263 (2008). https://doi.org/10.1021/jp807482a

    Article  CAS  Google Scholar 

  116. M.-J. Song, J.H. Kim, S.K. Lee, J.-H. Lee, D.S. Lim, S.W. Hwang, D. Whang, Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit. Microchim. Acta 171(3–4), 249–255 (2010). https://doi.org/10.1007/s00604-010-0432-z

    Article  CAS  Google Scholar 

  117. H.F. Cui, Y.F. Bai, W.W. Wu, X.Y. He, J.H.T. Luong, Modification with mesoporous platinum and poly(pyrrole-3-carboxylic acid)-based copolymer on boron-doped diamond for nonenzymatic sensing of hydrogen peroxide. J. Electroanal. Chem. 766, 52–59 (2016). https://doi.org/10.1016/j.jelechem.2016.01.026

    Article  CAS  Google Scholar 

  118. M.-J. Song, S.-K. Lee, D.-S. Lim, Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal. Sci. 28(6), 583–587 (2012). https://doi.org/10.2116/analsci.28.583

    Article  CAS  Google Scholar 

  119. Z. Deng, H. Long, Q. Wei, Z. Yu, B. Zhou, Y. Wang, L. Zhang, S. Li, L. Ma, Y. Xie, J. Min, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens. Actuators B: Chem. 242(Supplement C), 825–34 (2017). https://doi.org/10.1016/j.snb.2016.09.176

  120. I. Duo, S. Ferro, A. De Battisti, C. Comninellis, Conductive metal-oxide nanoparticles on synthetic boron-doped diamond surfaces, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, ed. by A. Wieckowski, E.R. Savinova, C.G. Vayenas (Marcel Dekker Inc, NY, 2003), pp. 877–906

    Google Scholar 

  121. K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106(8), 1869–1877 (2002). https://doi.org/10.1021/jp013168v

    Article  CAS  Google Scholar 

  122. M.A. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60(3), 267–73 (1975). https://doi.org/10.1016/S0022-0728(75)80261-0

  123. I. González-González, E.R. Fachini, M.A. Scibioh, D.A. Tryk, M. Tague, H.C.D. Abruña, C.R. Cabrera, Facet-selective platinum electrodeposition at free-standing polycrystalline boron-doped diamond films. Langmuir 25(17), 10329–10336 (2009). https://doi.org/10.1021/la8035055

  124. T. Kondo, S. Aoshima, K. Hirata, K. Honda, Y. Einaga, A. Fujishima, T. Kawai, Crystal-Face-Selective Adsorption of Au Nanoparticles onto Polycrystalline diamond surfaces. Langmuir 24(14), 7545–7548 (2008). https://doi.org/10.1021/la800782r

    Article  CAS  Google Scholar 

  125. M. Wei, L.G. Sun, Z.Y. Xie, J.F. Zhii, A. Fujishima, Y. Einaga, D.G. Fu, X.M. Wang, Z.Z. Gu, Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids. Adv. Func. Mater. 18(9), 1414–1421 (2008). https://doi.org/10.1002/adfm.200701099

    Article  Google Scholar 

  126. M. Wei, Z. Xie, L. Sun, Z.Z. Gu, Electrochemical properties of a boron-doped diamond electrode modified with gold/polyelectrolyte hollow spheres. Electroanalysis 21(2), 138–143 (2009). https://doi.org/10.1002/elan.200804411

    Article  CAS  Google Scholar 

  127. M. Osawa, K.-I. Ataka, K. Yoshii, Y. Nishikawa, Surface-Enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47(9), 1497–1502 (1993). https://doi.org/10.1366/0003702934067478

    Article  CAS  Google Scholar 

  128. J.K. Zak, J.E. Butler, G.M. Swain, Diamond optically transparent electrodes: demonstration of concept with ferri/ferrocyanide and methyl viologen. Anal. Chem. 73(5), 908–914 (2001). https://doi.org/10.1021/ac001257i

    Article  CAS  Google Scholar 

  129. H.B. Martin, P.W. Morrison, Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry. Electrochem. Solid-State Lett. 4(4), E17–E20 (2001). https://doi.org/10.1149/1.1353162

    Article  CAS  Google Scholar 

  130. D. Neubauer, J. Scharpf, A. Pasquarelli, B. Mizaikoff, C. Kranz, Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst 138(22), 6746–6752 (2013). https://doi.org/10.1039/C3AN01169K

    Article  CAS  Google Scholar 

  131. J. Izquierdo, B. Mizaikoff, C. Kranz, Surface-enhanced infrared spectroscopy on boron-doped diamond modified with gold nanoparticles for spectroelectrochemical analysis. Physica Status Solidi (a) 213(8), 2056–2062 (2016). https://doi.org/10.1002/pssa.201600222

  132. J. Hu, X. Lu, J. Foord, Nanodiamond pretreatment for the modification of diamond electrodes by platinum nanoparticles. Electrochem. Commun. 12(5), 676–679 (2010). https://doi.org/10.1016/j.elecom.2010.03.004

    Article  CAS  Google Scholar 

  133. Wang, J.; Swain, G.; Tachibana, T.; Kobashi, K., The incorporation of Pt nanoparticles into boron-doped diamond thin-films: dimensionally stable catalytic electrodes. J. New Mater. Electrochem. Syst. 3(1), 75–82 (2000)

    Google Scholar 

  134. J. Wang, G.M. Swain, T. Tachibana, K. Kobashi, Electrocatalytic diamond thin film electrodes with incorporated PT. Electrochem. Soc. Inc: Pennington 2002, 157–167 (2001)

    Google Scholar 

  135. N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes. J. Phys. Chem. B 110(11), 5639–5646 (2006). https://doi.org/10.1021/jp0547616

    Article  CAS  Google Scholar 

  136. F. Bottari, K. De Wael, Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules. J. Electroanal. Chem. 801(Supplement C), 521–526 (2017). https://doi.org/10.1016/j.jelechem.2017.07.053

  137. K.P. Loh, S.L. Zhao, W. De Zhang, Diamond and carbon nanotube glucose sensors based on electropolymerization. Diam. Relat. Mater. 13(4), 1075–1079 (2004). https://doi.org/10.1016/j.diamond.2003.11.009

    Article  CAS  Google Scholar 

  138. C. Martínez-Huitle, N.S. Fernandes, S. Ferro, A. De Battisti, M. Quiroz, Fabrication and application of Nafion®-modified boron-doped diamond electrode as sensor for detecting caffeine. Diam. Relat. Mater. 19(10), 1188–1193 (2010). https://doi.org/10.1016/j.diamond.2010.05.004

    Article  CAS  Google Scholar 

  139. P.R. Roy, M.S. Saha, T. Okajima, S.G. Park, A. Fujishima, T. Ohsaka, Selective detection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film. Electroanalysis 16(21), 1777–1784 (2004). https://doi.org/10.1002/elan.200303026

    Article  CAS  Google Scholar 

  140. A.O. Simm, C.E. Banks, S. Ward-Jones, T.J. Davies, N.S. Lawrence, T.G. Jones, L. Jiang, R.G. Compton, Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition. Analyst 130(9), 1303–1311 (2005). https://doi.org/10.1039/b506956d

    Article  CAS  Google Scholar 

  141. A. Salimi, M.E. Hyde, C.E. Banks, R.G. Compton, Boron doped diamond electrode modified with iridium oxide for amperometic detection of ultra trace amounts of arsenic (III). Analyst 129(1), 9–14 (2004). https://doi.org/10.1039/B312285A

    Article  CAS  Google Scholar 

  142. N. Vinokur, B. Miller, Y. Avyigal, R. Kalish, Cathodic and anodic deposition of mercury and silver at boron-doped diamond electrodes. J. Electrochem. Soc. 146(1), 125–130 (1999). https://doi.org/10.1149/1.1391574

    Article  CAS  Google Scholar 

  143. H. Terashima, T. Tsuji, Adsorption of bovine serum albumin onto mica surfaces studied by a direct weighing technique. Colloids Surf. B 27(2), 115–122 (2003). https://doi.org/10.1016/S0927-7765(02)00044-9

    Article  CAS  Google Scholar 

  144. H.E.M. Hussein, H. Amari, J.V. Macpherson, Electrochemical synthesis of nanoporous platinum nanoparticles using laser pulse heating: application to methanol oxidation. ACS Catal. 7(10), 7388–7398 (2017). https://doi.org/10.1021/acscatal.7b02701

    Article  CAS  Google Scholar 

  145. M. Limat, B. El Roustom, H. Jotterand, G. Fóti, C. Comninellis, Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode. Electrochim. Acta 54(9), 2410–2416 (2009). https://doi.org/10.1016/j.electacta.2008.02.050

    Article  CAS  Google Scholar 

  146. C. Zhang, L. Gu, Y. Lin, Y. Wang, D. Fu, Z. Gu, Degradation of X-3B dye by immobilized TiO2 photocatalysis coupling anodic oxidation on BDD electrode. J. Photochem. Photobiol. A 207(1), 66–72 (2009). https://doi.org/10.1016/j.jphotochem.2009.01.014

    Article  CAS  Google Scholar 

  147. F. Celii, J. Butler, Diamond chemical vapor deposition. Annu. Rev. Phys. Chem. 42(1), 643–684 (1991). https://doi.org/10.1146/annurev.pc.42.100191.003235

    Article  CAS  Google Scholar 

  148. J.H. Luong, K.B. Male, J.D. Glennon, Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10), 1965–1979 (2009). https://doi.org/10.1039/B910206J

    Article  CAS  Google Scholar 

  149. K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels. J. Phys. Chem. B 108, 15117–15127 (2004). https://doi.org/10.1021/jp048222x

    Article  CAS  Google Scholar 

  150. H. Notsu, I. Yagi, T. Tatsuma, D.A. Tryk, A. Fujishima, Introduction of oxygen-containing functional groups onto diamond electrode surfaces by oxygen plasma and anodic polarization. Electrochem. Solid-State Lett. 2(10), 522–524 (1999). https://doi.org/10.1149/1.1390890

    Article  CAS  Google Scholar 

  151. D.W. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12), 1157–1165 (2004). https://doi.org/10.1039/b415395m

    Article  CAS  Google Scholar 

  152. F. Maillard, M. Eikerling, O. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357–377 (2004). https://doi.org/10.1039/b303911k

    Article  CAS  Google Scholar 

  153. S.R. Belding, E.J. Dickinson, R.G. Compton, Diffusional cyclic voltammetry at electrodes modified with random distributions of electrocatalytic nanoparticles: theory. J. Phys. Chem. C 113(25), 11149–11156 (2009). https://doi.org/10.1021/jp901664p

    Article  CAS  Google Scholar 

  154. T. Kondo, T. Morimura, T. Tsujimoto, T. Aikawa, M. Yuasa, Platinum nanoparticle-embedded porous diamond spherical particles as an active and stable heterogeneous catalyst. Sci Rep. 7, 10 (2017). https://doi.org/10.1038/s41598-017-08949-0

    Article  CAS  Google Scholar 

  155. U. Griesbach, D. Zollinger, H. Pütter, C. Comninellis, Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale⋆. J. Appl. Electrochem. 35(12), 1265–1270 (2005). https://doi.org/10.1007/s10800-005-9038-2

    Article  CAS  Google Scholar 

  156. D. Bavykin, E. Milsom, F. Marken, D. Kim, D. Marsh, D. Riley, F. Walsh, K. El-Abiary, A. Lapkin, A novel cation-binding TiO2 nanotube substrate for electro-and bioelectro-catalysis. Electrochem. Commun. 7(10), 1050–1058 (2005). https://doi.org/10.1016/j.elecom.2005.07.010

    Article  CAS  Google Scholar 

  157. M.E. Hyde, R.G. Compton, A review of the analysis of multiple nucleation with diffusion controlled growth. J. Electroanal. Chem. 549, 1–12 (2003). https://doi.org/10.1016/S0022-0728(03)00250-X

    Article  CAS  Google Scholar 

  158. D. Grujicic, B. Pesic, Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim. Acta 50(22), 4405–4418 (2005). https://doi.org/10.1016/j.electacta.2005.02.013

    Article  CAS  Google Scholar 

  159. D. Grujicic, B. Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta 50(22), 4426–4443 (2005). https://doi.org/10.1016/j.electacta.2005.02.012

    Article  CAS  Google Scholar 

  160. S. Jones, K. Tedsree, M. Sawangphruk, J.S. Foord, J. Fisher, D. Thompsett, S.C.E. Tsang, Promotion of direct methanol electro-oxidation by Ru Terraces on Pt by using a reversed spillover mechanism. ChemCatChem 2(9), 1089–1095 (2010). https://doi.org/10.1002/cctc.201000106

    Article  CAS  Google Scholar 

  161. M.E. Hyde, R. Jacobs, R.G. Compton, In situ AFM studies of metal deposition. J. Phys. Chem. B 106(43), 11075–11080 (2002). https://doi.org/10.1021/jp0213607

    Article  CAS  Google Scholar 

  162. B. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site. J. Electroanal. Chem. Interfacial Electrochem. 177(1–2), 13–23 (1984). https://doi.org/10.1016/0022-0728(84)80207-7

  163. Z.D. Wei, S.H. Chan, Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. J. Electroanal. Chem. 569(1), 23–33 (2004). https://doi.org/10.1016/j.jelechem.2004.01.034

    Article  CAS  Google Scholar 

  164. M. Mavrikakis, P. Stoltze, J.K. Nørskov, Making gold less noble. Catal. Lett. 64(2), 101–106 (2000). https://doi.org/10.1023/A:1019028229377

    Article  CAS  Google Scholar 

  165. A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. Barnett, U. Landman, When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103(48), 9573–9578 (1999). https://doi.org/10.1021/jp9935992

    Article  CAS  Google Scholar 

  166. M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383), 1647–1650 (1998). https://doi.org/10.1126/science.281.5383.1647

  167. O. Niwa, Electroanalytical chemistry with carbon film electrodes and micro and nano-structured carbon film-based electrodes. Bull. Chem. Soc. Jpn. 78(4), 555–571 (2005). https://doi.org/10.1246/bcsj.78.555

    Article  CAS  Google Scholar 

  168. I. Duo, C. Comninellis, W. Haenni, Perret A, in Deposition of Nanoparticles of Iridium Dioxyde on a Synthetic Boron-Doped Diamond Surface, Diamond Materials Vii, Proceedings, Pennington, ed. by G.M. Swain, J.L. Davidson, J.C. Angus, T. Ando, W.D. Brown (Electrochemical Society Inc, Pennington, 2001), pp. 147–156

    Google Scholar 

  169. M.E. Hyde, C.E. Banks, R.G. Compton, Anodic stripping voltammetry: an AFM study of some problems and limitations. Electroanalysis 16(5), 345–354 (2004). https://doi.org/10.1002/elan.200302863

    Article  CAS  Google Scholar 

  170. J. Barton, J.M. Bockris, The electrolytic growth of dendrites from ionic solutions, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, pp. 485–505 (1962)

    Google Scholar 

  171. M. Paunovic, M. Schlesinger, Kinetics and mechanism of electrodeposition, in Fundamentals of Electrochemical Deposition, 2nd edn. (Wiley, Hoboken, NJ, 2006), pp. 77–112

    Google Scholar 

  172. I. González-González, Y. Hernández-Lebrón, E. Nicolau, C.R. Cabrera, Ammonia oxidation enhancement at square-wave treated platinum particle modified boron-doped diamond electrodes. ECS Trans. 33(1), 201–209 (2010). https://doi.org/10.1149/1.3484517

    Article  Google Scholar 

  173. Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40(7), 4167–4185 (2011). https://doi.org/10.1039/C0CS00176G

    Article  CAS  Google Scholar 

  174. R. Lam, M. Chen, E. Pierstorff, H. Huang, E. Osawa, D. Ho, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2(10), 2095–2102 (2008). https://doi.org/10.1021/nn800465x

    Article  CAS  Google Scholar 

  175. B. Guan, F. Zou, J. Zhi, Nanodiamond as the pH-Responsive vehicle for an anticancer drug. Small 6(14), 1514–1519 (2010). https://doi.org/10.1002/smll.200902305

    Article  CAS  Google Scholar 

  176. A. Thalhammer, R.J. Edgington, L.A. Cingolani, R. Schoepfer, R.B. Jackman, The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials 31(8), 2097–2104 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.109

    Article  CAS  Google Scholar 

  177. Y. Wang, J. Zhi, Y. Liu, J. Zhang, Electrochemical detection of surfactant cetylpyridinium bromide using boron-doped diamond as electrode. Electrochem. Commun. 13(1), 82–85 (2011). https://doi.org/10.1016/j.elecom.2010.11.019

    Article  CAS  Google Scholar 

  178. R.S. Lewis, T. Ming, J.F. Wacker, E. Steel, Interstellar diamonds in meteorites. Nature 326, 160–162 (1987). https://doi.org/10.1038/326160a0

    Article  CAS  Google Scholar 

  179. V. Danilenko, Shock-wave sintering of nanodiamonds. Phys. Solid State 46(4), 711–715 (2004). https://doi.org/10.1134/1.1711456

    Article  CAS  Google Scholar 

  180. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006). https://doi.org/10.1021/ja063303n

    Article  CAS  Google Scholar 

  181. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi (a) 204(9), 2881–2887 (2007). https://doi.org/10.1002/pssa.200776330

  182. B. Palosz, C. Pantea, E. Grzanka, S. Stelmakh, T. Proffen, T. Zerda, W. Palosz, Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diam. Relat. Mater. 15(11), 1813–1817 (2006). https://doi.org/10.1016/j.diamond.2006.09.001

    Article  CAS  Google Scholar 

  183. Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004). https://doi.org/10.1021/cm048875q

    Article  CAS  Google Scholar 

  184. I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State 46(4), 636–643 (2004). https://doi.org/10.1134/1.1711440

    Article  CAS  Google Scholar 

  185. A. Härtl, E. Schmich, J.A. Garrido, J. Hernando, S.C. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3(10), 736–742 (2004). https://doi.org/10.1038/nmat1204

    Article  CAS  Google Scholar 

  186. F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7(12), 3588–3591 (2007). https://doi.org/10.1021/nl0716303

    Article  CAS  Google Scholar 

  187. P.-H. Chung, E. Perevedentseva, C.-L. Cheng, The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 601(18), 3866–3870 (2007). https://doi.org/10.1016/j.susc.2007.04.150

    Article  CAS  Google Scholar 

  188. O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4(8), 4824–4830 (2010). https://doi.org/10.1021/nn100748k

    Article  CAS  Google Scholar 

  189. V. Bondar’, I. Pozdnyakova, A. Puzyr’, Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State 46(4), 758–760 (2004). https://doi.org/10.1134/1.1711468

  190. C. Nebel, H. Kato, B. Rezek, D. Shin, D. Takeuchi, H. Watanabe, T. Yamamoto, Electrochemical properties of undoped hydrogen terminated CVD diamond. Diam. Relat. Mater. 15(2), 264–268 (2006). https://doi.org/10.1016/j.diamond.2005.08.012

    Article  CAS  Google Scholar 

  191. D. Shin, H. Watanabe, C.E. Nebel, Insulator−Metal transition of intrinsic diamond. J. Am. Chem. Soc. 127(32), 11236–11237 (2005). https://doi.org/10.1021/ja052834t

    Article  CAS  Google Scholar 

  192. V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318(5855), 1424–1430 (2007). https://doi.org/10.1126/science.1148841

    Article  CAS  Google Scholar 

  193. K.B. Holt, D.J. Caruana, E.J. Millán-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009). https://doi.org/10.1021/ja902216n

    Article  CAS  Google Scholar 

  194. T.S. Varley, M. Hirani, G. Harrison, K.B. Holt, Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss. 172, 349–364 (2014). https://doi.org/10.1039/C4FD00041B

    Article  CAS  Google Scholar 

  195. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17(45), 4811–4819 (2007). https://doi.org/10.1039/B710189A

    Article  CAS  Google Scholar 

  196. T. Brülle, A. Denisenko, H. Sternschulte, U. Stimming, Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR. Phys. Chem. Chem. Phys. 13(28), 12883–12891 (2011). https://doi.org/10.1039/C1CP20852G

    Article  Google Scholar 

  197. K.B. Holt, CHAPTER 6 Electrochemistry of Nanodiamond Particles (The Royal Society of Chemistry, In Nanodiamond, 2014), pp. 128–150

    Google Scholar 

  198. I.A. Novoselova, E.N. Fedoryshena, É.V. Panov, A.A. Bochechka, L.A. Romanko, Electrochemical properties of compacts of nano-and microdisperse diamond powders in aqueous electrolytes. Phys. Solid State 46(4), 748–750 (2004). https://doi.org/10.1134/1.1711465

    Article  CAS  Google Scholar 

  199. L.H. Chen, J.B. Zang, Y.H. Wang, L.Y. Bian, Electrochemical oxidation of nitrite on nanodiamond powder electrode. Electrochim. Acta 53(8), 3442–3445 (2008). https://doi.org/10.1016/j.electacta.2007.12.023

    Article  CAS  Google Scholar 

  200. J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, X. Qu, Surface modification and electrochemical behaviour of undoped nanodiamonds. Electrochim. Acta 72, 68–73 (2012). https://doi.org/10.1016/j.electacta.2012.03.169

    Article  CAS  Google Scholar 

  201. I. Shpilevaya, J.S. Foord, Electrochemistry of methyl viologen and anthraquinonedisulfonate at diamond and diamond powder electrodes: the influence of surface chemistry. Electroanalysis 26(10), 2088–2099 (2014). https://doi.org/10.1002/elan.201400310

    Article  CAS  Google Scholar 

  202. E. Peltola, N. Wester, K.B. Holt, L.-S. Johansson, J. Koskinen, V. Myllymäki, T. Laurila, Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosens. Bioelectron. 88(Supplement C), 273–282 (2017). https://doi.org/10.1016/j.bios.2016.08.055

  203. M. Briones, E. Casero, M.D. Petit-Dominguez, M.A. Ruiz, A.M. Parra-Alfambra, F. Pariente, E. Lorenzo, L. Vazquez, Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens. Bioelectron. 68, 521–528 (2015). https://doi.org/10.1016/j.bios.2015.01.044

    Article  CAS  Google Scholar 

  204. M. Briones, M.D. Petit-Dominguez, A.M. Parra-Alfambra, L. Vazquez, F. Pariente, E. Lorenzo, E. Casero, Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices. Bioelectrochemistry 111, 93–99 (2016). https://doi.org/10.1016/j.bioelechem.2016.05.007

    Article  CAS  Google Scholar 

  205. N.B. Simioni, T.A. Silva, G.G. Oliveira, O. Fatibello, A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuator B-Chem. 250, 315–323 (2017). https://doi.org/10.1016/j.snb.2017.04.175

    Article  CAS  Google Scholar 

  206. N.B. Simioni, G.G. Oliveira, F.C. Vicentini, M.R.V. Lanza, B.C. Janegitz, O. Fatibello-Filho, Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diam. Relat. Mater. 74(Supplement C), 191–196 (2017). https://doi.org/10.1016/j.diamond.2017.03.007

  207. W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8(2), 1419–1428 (2014). https://doi.org/10.1021/nn405240g

    Article  CAS  Google Scholar 

  208. N. Hasan, W. Zhang, A.D. Radadia, Characterization of nanodiamond seeded interdigitated electrodes using impedance spectroscopy of pure water. Electrochim. Acta 210, 375–382 (2016). https://doi.org/10.1016/j.electacta.2016.05.053

    Article  CAS  Google Scholar 

  209. Y. Goto, F. Ohishi, K. Tanaka, H. Usui, Formation of diamond nanoparticle thin films by electrophoretic deposition. Jpn. J. Appl. Phys. 55(3), 6 (2016). https://doi.org/10.7567/jjap.55.03dd10

    Article  Google Scholar 

  210. L. La-Torre-Riveros, K. Soto, M.A. Scibioh, C.R. Cabrera, Electrophoretically fabricated diamond nanoparticle-based electrodes. J. Electrochem. Soc. 157(6), B831–B836 (2010). https://doi.org/10.1149/1.3374403

    Article  CAS  Google Scholar 

  211. S. Su, J. Wang, J. Wei, J. Qiu, S. Wang, Thermal conductivity studies of electrophoretically deposited nanodiamond arrays. Mater. Sci. Eng.: B 225(Supplement C), 54–59 (2017). https://doi.org/10.1016/j.mseb.2017.08.010

  212. G.L. Bilbro, Theory of electrodeposition of diamond nanoparticles. Diam. Relat. Mater. 11(8), 1572–1577 (2002). https://doi.org/10.1016/S0925-9635(02)00104-8

    Article  CAS  Google Scholar 

  213. X. Zhao, J. Zang, Y. Wang, L. Bian, J. Yu, Electropolymerizing polyaniline on undoped 100 nm diamond powder and its electrochemical characteristics. Electrochem. Commun. 11(6), 1297–1300 (2009). https://doi.org/10.1016/j.elecom.2009.04.029

    Article  CAS  Google Scholar 

  214. J. Zang, Y. Wang, X. Zhao, G. Xin, S. Sun, X. Qu, S. Ren, Electrochemical synthesis of polyaniline on nanodiamond powder. Int. J. Electrochem. Sci 7(2), 1677–1687 (2012)

    Google Scholar 

  215. H. Ashassi-Sorkhabi, M. Es’haghi, Electro-Synthesis of Nano-Colloidal PANI/ND composite for enhancement of Corrosion-Protection effect of PANI coatings. J. Mater. Eng. Perform. 22(12), 3755–3761 (2013). https://doi.org/10.1007/s11665-013-0638-4

  216. E. Tamburri, S. Orlanducci, V. Guglielmotti, G. Reina, M. Rossi, M.L. Terranova, Engineering detonation nanodiamond–Polyaniline composites by electrochemical routes: structural features and functional characterizations. Polymer 52(22), 5001–5008 (2011). https://doi.org/10.1016/j.polymer.2011.09.003

    Article  CAS  Google Scholar 

  217. E. Tamburri, V. Guglielmotti, S. Orlanducci, M.L. Terranova, D. Sordi, D. Passeri, R. Matassa, M. Rossi, Nanodiamond-mediated crystallization in fibers of PANI nanocomposites produced by template-free polymerization: conductive and thermal properties of the fibrillar networks. Polymer 53(19), 4045–4053 (2012). https://doi.org/10.1016/j.polymer.2012.07.014

    Article  CAS  Google Scholar 

  218. V. Kumar, R. Mahajan, D. Bhatnagar, I. Kaur, Nanofibers synthesis of ND:PANI composite by liquid/liquid interfacial polymerization and study on the effect of NDs on growth mechanism of nanofibers. Eur. Polym. J. 83(Supplement C), 1–9 (2016). https://doi.org/10.1016/j.eurpolymj.2016.07.025

  219. V. Kumar, R. Mahajan, I. Kaur, K.-H. Kim, Simple and Mediator-Free urea sensing based on engineered nanodiamonds with polyaniline nanofibers synthesized in situ. ACS Appl. Mater. Interfaces 9(20), 16813–16823 (2017). https://doi.org/10.1021/acsami.7b01948

    Article  CAS  Google Scholar 

  220. M. Briones, E. Casero, L. Vazquez, F. Pariente, E. Lorenzo, M.D. Petit-Dominguez, Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms. Anal. Chim. Acta 908, 141–149 (2016). https://doi.org/10.1016/j.aca.2015.12.029

    Article  CAS  Google Scholar 

  221. H. Ashassi-Sorkhabi, R. Bagheri, B. Rezaei-Moghadam, Corrosion protection properties of PPy-ND composite coating: sonoelectrochemical synthesis and design of experiment. J. Mater. Eng. Perform. 25(2), 611–622 (2016). https://doi.org/10.1007/s11665-016-1886-x

    Article  CAS  Google Scholar 

  222. M.K. Ram, H. Gomez, F. Alvi, E. Stefanakos, Y. Goswami, A. Kumar, Novel nanohybrid structured regioregular polyhexylthiophene blend films for photoelectrochemical energy applications. J. Phys. Chem. C 115(44), 21987–21995 (2011). https://doi.org/10.1021/jp205297n

    Article  CAS  Google Scholar 

  223. N. Giambrone, M. McCrory, A. Kumar, M.K. Ram, Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films 615, 226–232 (2016). https://doi.org/10.1016/j.tsf.2016.07.028

    Article  CAS  Google Scholar 

  224. L.-N. Tsai, G.-R. Shen, Y.-T. Cheng, W. Hsu, Performance improvement of an electrothermal microactuator fabricated using Ni-diamond nanocomposite. J. Microelectromech. Syst. 15(1), 149–158 (2006). https://doi.org/10.1109/JMEMS.2005.863737

    Article  CAS  Google Scholar 

  225. E. Levashov, P. Vakaev, E. Zamulaeva, A. Kudryashov, V. Kurbatkina, D. Shtansky, A. Voevodin, A. Sanz, Disperse-strengthening by nanoparticles advanced tribological coatings and electrode materials for their deposition. Surf. Coat. Technol. 201(13), 6176–6181 (2007). https://doi.org/10.1016/j.surfcoat.2006.08.134

    Article  CAS  Google Scholar 

  226. M. Sajjadnejad, H. Omidvar, M. Javanbakht, Influence of pulse operational parameters on electrodeposition, morphology and microstructure of Ni/nanodiamond composite coatings. Int. J. Electrochem. Sci. 12(5), 3635–3651 (2017). https://doi.org/10.20964/2017.05.52

    Article  CAS  Google Scholar 

  227. M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari, Textural and structural evolution of pulse electrodeposited Ni/diamond nanocomposite coatings. J. Alloy. Compd. 704, 809–817 (2017). https://doi.org/10.1016/j.jalicom.2016.12.318

    Article  CAS  Google Scholar 

  228. T. Fujimura, V.Y. Dolmatov, G. Burkat, E. Orlova, M. Veretennikova, Electrochemical codeposition of Sn–Pb–metal alloy along with detonation synthesis nanodiamonds. Diam. Relat. Mater. 13(11), 2226–2229 (2004). https://doi.org/10.1016/j.diamond.2004.06.009

    Article  CAS  Google Scholar 

  229. S. Shahrokhian, S. Ranjbar, M. Ghalkhani, Modification of the electrode surface by ag nanoparticles decorated nano Diamond-graphite for voltammetric determination of ceftizoxime. Electroanalysis 28(3), 469–476 (2016). https://doi.org/10.1002/elan.201500377

    Article  CAS  Google Scholar 

  230. Y. Yao, Y.J. Xue, Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuator B-Chem. 211, 52–58 (2015). https://doi.org/10.1016/j.snb.2014.12.134

    Article  CAS  Google Scholar 

  231. L. Bian, Y. Wang, J. Lu, J. Zang, Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite. Diam. Relat. Mater. 19(10), 1178–1182 (2010). https://doi.org/10.1016/j.diamond.2010.05.007

    Article  CAS  Google Scholar 

  232. L.Y. Bian, Y.H. Wang, J.B. Zang, J.K. Yu, H. Huang, Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts. J. Electroanal. Chem. 644(1), 85–88 (2010). https://doi.org/10.1016/j.jelechem.2010.04.001

    Article  CAS  Google Scholar 

  233. L. La-Torre-Riveros, E. Abel-Tatis, A.E. Méndez-Torres, D.A. Tryk, M. Prelas, C.R. Cabrera, Synthesis of platinum and platinum–ruthenium-modified diamond nanoparticles. J. Nanopart. Res. 13(7), 2997–3009 (2011). https://doi.org/10.1007/s11051-010-0196-8

    Article  CAS  Google Scholar 

  234. L.Y. Bian, Y.H. Wang, J.B. Zang, F.W. Meng, Y.L. Zhao, Microwave synthesis and characterization of Pt nanoparticles supported on undoped nanodiamond for methanol electrooxidation. Int. J. Hydrog. Energy 37(2), 1220–1225 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.118

    Article  CAS  Google Scholar 

  235. L. La-Torre-Riveros, R. Guzman-Blas, A.N.E. Méndez-Torres, M. Prelas, D.A. Tryk, C.R. Cabrera, Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 4(2), 1134–11347 (2012) https://doi.org/10.1021/am2018628

  236. J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, R. Lu, X. Qu, S. Ren, Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation. Carbon 50(8), 3032–3038 (2012). https://doi.org/10.1016/j.carbon.2012.02.089

    Article  CAS  Google Scholar 

  237. Y.L. Zhao, Y.H. Wang, J.B. Zang, J. Lu, X.P. Xu, A novel support of nano titania modified graphitized nanodiamond for Pt electrocatalyst in direct methanol fuel cell. Int. J. Hydrog. Energy 40(13), 4540–4547 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.041

    Article  CAS  Google Scholar 

  238. Y. Zhang, Y.H. Wang, L.Y. Bian, R. Lu, J.B. Zang, Functional separation of oxidation-reduction reaction and electron transport: PtRu/undoped nanodiamond and acetylene black as a hybrid electrocatalyst in a direct methanol fuel cell. Int. J. Hydrog. Energy 41(8), 4624–4631 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.082

    Article  CAS  Google Scholar 

  239. L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563

    Article  CAS  Google Scholar 

  240. Y.S. Zhu, Y.M. Lin, B.S. Zhang, J.F. Rong, B.N. Zong, D.S. Su, Nitrogen-doped annealed nanodiamonds with varied sp(2)/sp(3) ratio as metal-free electrocatalyst for the oxygen reduction reaction. Chemcatchem 7(18), 2840–2845 (2015). https://doi.org/10.1002/cctc.201402930

    Article  CAS  Google Scholar 

  241. E.Y. Choi, C.K. Kim, Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci Rep. 7(1), 4178 (2017). https://doi.org/10.1038/s41598-017-04597-6

    Article  CAS  Google Scholar 

  242. L. Zhou, H. Zhang, X. Guo, H. Sun, S. Liu, M.O. Tade, S. Wang, Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. J. Colloid Interface Sci. 493(Supplement C), 275–80 (2017). https://doi.org/10.1016/j.jcis.2017.01.038

  243. D.H. Wang, L.-S. Tan, H. Huang, L. Dai, E. Ōsawa, In-situ nanocomposite synthesis: Arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether − ketone) in polyphosphoric acid. Macromolecules 42(1), 114–124 (2009). https://doi.org/10.1021/ma8019078

  244. K. Pei, H.D. Li, G.T. Zou, R.C. Yu, H.F. Zhao, X. Shen, L.Y. Wang, Y.P. Song, D.C. Qiu, Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell. J. Power Sources 342, 515–520 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.051

    Article  CAS  Google Scholar 

  245. X.-B. Cheng, M.-Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X.-Q. Zhang, Q. Zhang, J. Jiang, Y. Gogotsi, Nanodiamonds suppress the growth of lithium dendrites. Nat. Commun. 8(1), 336 (2017). https://doi.org/10.1038/s41467-017-00519-2

    Article  CAS  Google Scholar 

  246. V. Medeliene, V. Stankevič, G. Bikulčius, The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating. Surf. Coat. Technol. 168(2), 161–168 (2003). https://doi.org/10.1016/S0257-8972(03)00224-X

    Article  CAS  Google Scholar 

  247. N.K. Shrestha, T. Takebe, T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings. Diam. Relat. Mater. 15(10), 1570–1575 (2006). https://doi.org/10.1016/j.diamond.2005.12.040

    Article  CAS  Google Scholar 

  248. L. Cunci, C.R. Cabrera, Preparation and electrochemistry of boron-doped diamond nanoparticles on glassy carbon electrodes. Electrochem. Solid-State Lett. 14(3), K17–K19 (2011). https://doi.org/10.1149/1.3532943

    Article  CAS  Google Scholar 

  249. J. Scholz, A.J. McQuillan, K.B. Holt, Redox transformations at nanodiamond surfaces revealed by in situ infrared spectroscopy. Chem. Commun. 47(44), 12140–12142 (2011). https://doi.org/10.1039/C1CC14961J

    Article  CAS  Google Scholar 

  250. Y.S. Zou, Y. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92(5), 053105 (2008). https://doi.org/10.1063/1.2841822

    Article  CAS  Google Scholar 

  251. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8(11), 3572–3576 (2008). https://doi.org/10.1021/nl801136h

    Article  CAS  Google Scholar 

  252. P. Subramanian, S. Kolagatla, S. Szunerits, Y. Coffinier, W.S. Yeap, K. Haenen, R. Boukherroub, A. Schechter, Atomic force microscopic and raman investigation of boron-doped diamond nanowire electrodes and their activity toward oxygen reduction. J Phys. Chem. C 121(6), 3397–3403 (2017). https://doi.org/10.1021/acs.jpcc.6b11546

    Article  CAS  Google Scholar 

  253. M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 24, 3624–3626 (2009). https://doi.org/10.1039/B903284C

    Article  Google Scholar 

  254. M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010). https://doi.org/10.1002/elan.200900296

    Article  CAS  Google Scholar 

  255. F. Gao, G. Lewes-Malandrakis, M.T. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla, T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51(Supplement C), 1–6 (2015). https://doi.org/10.1016/j.diamond.2014.10.009

  256. K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7(2), 551–558 (2015). https://doi.org/10.1039/C4NR04417G

    Article  CAS  Google Scholar 

  257. M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films 601(Supplement C), 35–40 (2016). https://doi.org/10.1016/j.tsf.2015.09.073

  258. V. Petrak, Z.V. Zivcova, H. Krysova, O. Frank, A. Zukal, L. Klimsa, J. Kopecek, A. Taylor, L. Kavan, V. Mortet, Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 114, 457–464 (2017). https://doi.org/10.1016/j.carbon.2016.12.012

    Article  CAS  Google Scholar 

  259. C. Hébert, E. Scorsone, M. Mermoux, P. Bergonzo, Porous diamond with high electrochemical performance. Carbon 90(Supplement C), 102–109. (2015) https://doi.org/10.1016/j.carbon.2015.04.016

  260. B.C. Lourencao, R.A. Pinheiro, T.A. Silva, E.J. Corat, O. Fatibello-Filho, Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications. Diam. Relat. Mater. 74(Supplement C), 182–190 (2017). https://doi.org/10.1016/j.diamond.2017.03.006

  261. A.A. Silva, R.A. Pinheiro, C.D.A. Razzino, V.J. Trava-Airoldi, E.J. Corat, Thin-film nanocomposites of BDD/CNT deposited on carbon fiber. Diam. Relat. Mater. 75(Supplement C), 116–122 (2017). https://doi.org/10.1016/j.diamond.2017.02.017

  262. M. Varga, S. Stehlik, O. Kaman, T. Izak, M. Domonkos, D.S. Lee, A. Kromka, Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite. Carbon 119(Supplement C), 124–132. https://doi.org/10.1016/j.carbon.2017.04.022

  263. T. Kondo, K. Yajima, T. Kato, M. Okano, C. Terashima, T. Aikawa, M. Hayase, M. Yuasa, Hierarchically nanostructured boron-doped diamond electrode surface. Diam. Relat. Mater. 72(Supplement C), 13–19 (2017) https://doi.org/10.1016/j.diamond.2016.12.004

  264. D. Plana, J. Humphrey, K. Bradley, V. Celorrio, D. Fermín, Charge transport across high surface area metal/diamond nanostructured composites. ACS Appl. Mater. Interfaces. 5(8), 2985–2990 (2013). https://doi.org/10.1021/am302397p

    Article  CAS  Google Scholar 

  265. T. Kondo, K. Hirata, T. Kawai, M. Yuasa, Self-assembled fabrication of a polycrystalline boron-doped diamond surface supporting Pt (or Pd)/Au-shell/core nanoparticles on the (111) facets and Au nanoparticles on the (100) facets. Diam. Relat. Mater. 20(8), 1171–1178 (2011). https://doi.org/10.1016/j.diamond.2011.06.033

    Article  CAS  Google Scholar 

  266. V. Plotnikov, B. Dem’yanov, S. Makarov, Effects of aluminum on the interaction of detonation diamond nanocrystals during high-temperature annealing. Tech. Phys. Lett. 35(5), 473–475 (2009). https://doi.org/10.1134/s1063785009050265

  267. D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J. Mater. Sci. 49(10), 3573–3591 (2014). https://doi.org/10.1007/s10853-014-8036-3

    Article  CAS  Google Scholar 

  268. V.Y. Dolmatov, A. Vehanen, V. Myllymäki, K.A. Rudometkin, A.N. Panova, K.M. Korolev, T.A. Shpadkovskaya, Purification of detonation nanodiamond material using high-intensity processes. Russ. J. Appl. Chem. 86(7), 1036–1045 (2013). https://doi.org/10.1134/s1070427213070161

    Article  CAS  Google Scholar 

  269. V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17(1), 13–22 (2008). https://doi.org/10.1016/j.diamond.2007.09.011

    Article  CAS  Google Scholar 

  270. O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, S. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115(20), 9827–9837 (2011). https://doi.org/10.1021/jp1102466

    Article  CAS  Google Scholar 

  271. S.P. Hong, T.H. Kim, S.W. Lee, Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern. Carbon 116(Supplement C), 640–647 (2017). https://doi.org/10.1016/j.carbon.2017.02.040

  272. N. Kannari, T. Itakura, J.-I. Ozaki, Electrochemical oxygen reduction activity of intermediate onion-like carbon produced by the thermal transformation of nanodiamond. Carbon 87(Supplement C), 415–417 (2015). https://doi.org/10.1016/j.carbon.2015.02.050

  273. J. Koh, S.H. Park, M.W. Chung, S.Y. Lee, S.I. Woo, Diamond@carbon-onion hybrid nanostructure as a highly promising electrocatalyst for the oxygen reduction reaction. RSC Adv. 6(33), 27528–27534 (2016). https://doi.org/10.1039/c5ra28066d

    Article  CAS  Google Scholar 

  274. X.X. Liu, Y.H. Wang, L. Dong, X. Chen, G.X. Xin, Y. Zhang, J.B. Zang, One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochim. Acta 194, 161–167 (2016). https://doi.org/10.1016/j.electacta.2016.02.002

    Article  CAS  Google Scholar 

  275. K.E. Toghill, L. Xiao, N.R. Stradiotto, R.G. Compton, The determination of methanol using an electrolytically fabricated nickel microparticle modified boron doped diamond electrode. Electroanalysis 22(5), 491–500 (2010). https://doi.org/10.1002/elan.200900523

    Article  CAS  Google Scholar 

  276. A. Panich, A. Altman, A. Shames, V.Y. Osipov, A. Aleksenskiy, A.Y. Vul, Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J. Phys. D Appl. Phys. 44(12), 125303 (2011). https://doi.org/10.1088/0022-3727/44/12/125303

    Article  CAS  Google Scholar 

  277. A.I. Shames, A.M. Panich, V.Y. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107(1), 014318 (2010). https://doi.org/10.1063/1.3273486

  278. A. Panich, A. Shames, O. Medvedev, V.Y. Osipov, A. Aleksenskiy, A.Y. Vul, Magnetic resonance study of detonation nanodiamonds with surface chemically modified by transition metal ions. Appl. Magn. Reson. 36(2–4), 317 (2009). https://doi.org/10.1007/s00723-009-0028-0

    Article  CAS  Google Scholar 

  279. A.M. Panich, A.I. Shames, N.A. Sergeev, V.Y. Osipov, A.E. Alexenskiy, A.Y. Vul’, Magnetic resonance study of gadolinium-grafted nanodiamonds. J. Phys. Chem. C 120(35), 19804–19811 (2016). https://doi.org/10.1021/acs.jpcc.6b05403

  280. H.J. Looi, L.Y. Pang, M.D. Whitfield, J.S. Foord, R.B. Jackman, Engineering low resistance contacts on p-type hydrogenated diamond surfaces. Diam. Relat. Mater. 9(3), 975–981 (2000). https://doi.org/10.1016/S0925-9635(00)00240-5

    Article  CAS  Google Scholar 

  281. Y. Jia, W. Zhu, E. Wang, Y. Huo, Z. Zhang, Initial stages of Ti growth on diamond (100) surfaces: from single adatom diffusion to quantum wire formation. Phys. Rev. Lett. 94(8), 086101 (2005). https://doi.org/10.1103/PhysRevLett.94.086101

    Article  CAS  Google Scholar 

  282. S. Stehlik, T. Petit, H.A. Girard, J.-C. Arnault, A. Kromka, B. Rezek, Nanoparticles assume electrical potential according to substrate, size, and surface termination. Langmuir 29(5), 1634–1641 (2013). https://doi.org/10.1021/la304472w

    Article  CAS  Google Scholar 

  283. I. Motochi, N. Makau, G. Amolo, Metal–semiconductor ohmic contacts: An ab initio Density Functional Theory study of the structural and electronic properties of metal–diamond (111) − (1 × 1) interfaces. Diam. Relat. Mater. 23, 10–17 (2012). https://doi.org/10.1016/j.diamond.2011.12.021

    Article  CAS  Google Scholar 

  284. M. Geis, J. Twichell, T. Lyszczarz, Diamond emitters fabrication and theory. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 14(3), 2060–2067 (1996). https://doi.org/10.1116/1.588986

    Article  CAS  Google Scholar 

  285. T. Tyler, V. Zhirnov, A. Kvit, D. Kang, J. Hren, Electron emission from diamond nanoparticles on metal tips. Appl. Phys. Lett. 82(17), 2904–2906 (2003). https://doi.org/10.1063/1.1570498

    Article  CAS  Google Scholar 

  286. N. Xu, Y. Tzeng, R. Latham, Similarities in the ‘cold’ electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces. J. Phys. D Appl. Phys. 26(10), 1776 (1993). https://doi.org/10.1088/0022-3727/26/10/035

    Article  CAS  Google Scholar 

  287. V.V. Zhirnov, E.I. Givargizov, P.S. Plekhanov, Field emission from silicon spikes with diamond coatings. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(2), 418–421 (1995). https://doi.org/10.1116/1.587960

    Article  CAS  Google Scholar 

  288. A. Karabutov, V. Frolov, V. Konov, Diamond/sp 2-bonded carbon structures: quantum well field electron emission? Diam. Relat. Mater. 10(3), 840–846 (2001). https://doi.org/10.1016/S0925-9635(00)00569-0

    Article  CAS  Google Scholar 

  289. Y. Takasu, S. Konishi, W. Sugimoto, Y. Murakami, Catalytic formation of nanochannels in the surface layers of diamonds by metal nanoparticles. Electrochem. Solid-State Lett. 9(7), C114–C117 (2006). https://doi.org/10.1149/1.2201995

    Article  CAS  Google Scholar 

  290. I.G. Casella, M. Contursi, Cobalt oxide electrodeposition on various electrode substrates from alkaline medium containing Co–gluconate complexes: a comparative voltammetric study. J. Solid State Electrochem. 16(12), 3739–3746 (2012). https://doi.org/10.1007/s10008-012-1794-4

    Article  CAS  Google Scholar 

  291. S.A. Yao, R.E. Ruther, L. Zhang, R.A. Franking, R.J. Hamers, J.F. Berry, Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 134(38), 15632–15635 (2012). https://doi.org/10.1021/ja304783j

    Article  CAS  Google Scholar 

  292. I. Zegkinoglou, P.L. Cook, P.S. Johnson, W. Yang, J. Guo, D. Pickup, R.N. González-Moreno, C. Rogero, R.E. Ruther, M.L. Rigsby, Electronic structure of diamond surfaces functionalized by Ru(tpy)2. J. Phys. Chem. C 116(26), 13877–13883 (2012). https://doi.org/10.1021/jp304016t

  293. T. Ochiai, K. Nakata, T. Murakami, A. Fujishima, Y. Yao, D.A. Tryk, Y. Kubota, Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Res. 44(3), 904–910 (2010). https://doi.org/10.1016/j.watres.2009.09.060

    Article  CAS  Google Scholar 

  294. P. Wang, M. Cao, Y. Ao, C. Wang, J. Hou, J. Qian, Investigation on Ce-doped TiO2-coated BDD composite electrode with high photoelectrocatalytic activity under visible light irradiation. Electrochem. Commun. 13(12), 1423–1426 (2011). https://doi.org/10.1016/j.elecom.2011.09.009

    Article  CAS  Google Scholar 

  295. T. Zhao, J. Wang, L. Jiang, T. Cheng, Preparation method of titanium dioxide and boron-doped diamond compounded photoelectric-synergetic electrode. CN101875007 A, 2010

    Google Scholar 

  296. D. Zhu, L. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12(9), 836–841 (2013). https://doi.org/10.1038/nmat3696

    Article  CAS  Google Scholar 

  297. R.J. Hamers, J.A. Bandy, D. Zhu, L. Zhang, Photoemission from diamond films and substrates into water: dynamics of solvated electrons and implications for diamond photoelectrochemistry. Faraday Discuss. 172, 397–411 (2014). https://doi.org/10.1039/C4FD00039K

    Article  CAS  Google Scholar 

  298. J.T. Matsushima, A.B. Couto, N.G. Ferreira, M.R. Baldan, Study of the electrochemical deposition of Cu/Sn alloy nanoparticles on boron doped diamond films for electrocatalytic nitrate reduction. MRS Proc. 1511 (2013). https://doi.org/10.1557/opl.2013.16

  299. M.-J. Song, S.-K. Lee, D.-S. Lim, Fabrication of Pt nanoparticles-decorated CVD diamond electrode for biosensor applications. Anal. Sci. 27(10), 985–985 (2011). https://doi.org/10.2116/analsci.27.985

  300. N. Yang, F. Gao, C.E. Nebel, Diamond decorated with copper nanoparticles for electrochemical reduction of carbon dioxide. Anal. Chem. 85(12), 5764–5769 (2013)

    Google Scholar 

  301. P. Kim, J.B. Joo, W. Kim, J. Kim, I.K. Song, J. Yi, NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J. Power Sources 160(2), 987–990 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.050

    Article  CAS  Google Scholar 

  302. A. Barras, S. Szunerits, L. Marcon, N. Monfilliette-Dupont, R. Boukherroub, Functionalization of diamond nanoparticles using “Click” chemistry. Langmuir 26(16), 13168–13172 (2010). https://doi.org/10.1021/la101709q

    Article  CAS  Google Scholar 

  303. A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22(5), 890–906 (2012). https://doi.org/10.1002/adfm.201102670

    Article  CAS  Google Scholar 

  304. Sung, C.-M. Diamond neural devices and associated methods. US20110282421A1, 2011

    Google Scholar 

  305. A. Barriga-Rivera, L. Bareket, J. Goding, U.A. Aregueta-Robles, G.J. Suaning, Visual prosthesis: interfacing stimulating electrodes with retinal neurons to restore vision. Front. Neurosci. 11(620) (2017). https://doi.org/10.3389/fnins.2017.00620

  306. Y.-C. Chen, D.-C. Lee, T.-Y. Tsai, C.-Y. Hsiao, J.-W. Liu, C.-Y. Kao, H.-K. Lin, H.-C. Chen, T.J. Palathinkal, W.-F. Pong, N.-H. Tai, I.N. Lin, I.-M. Chiu, Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials 31(21), 5575–5587 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.061

    Article  CAS  Google Scholar 

  307. A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 33(24), 5812–5820 (2012). https://doi.org/10.1016/j.biomaterials.2012.04.063

    Article  CAS  Google Scholar 

  308. A. Ahnood, H. Meffin, D.J. Garrettm, K. Fox, K. Ganesan, A. Stacey, N.V. Apollo, Y.T. Wong, S.G. Lichter, W. Kentler, O. Kavehei, U. Greferath, K.A. Vessey, M.R. Ibbotson, E.L. Fletcher, A.N. Burkitt, S. Prawer, Diamond devices for high acuity prosthetic vision. Adv. Biosyst. 1(1–2), 1600003-n/a (2017). https://doi.org/10.1002/adbi.201600003

  309. K. Ganesan, D.J. Garrett, A. Ahnood, M.N. Shivdasani, W. Tong, A.M. Turnley, K. Fox, H. Meffin, S. Prawer, An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials 35(3), 908–915 (2014). https://doi.org/10.1016/j.biomaterials.2013.10.040

    Article  CAS  Google Scholar 

  310. A. Bendali, L. Rousseau, G. Lissorgues, E. Scorsone, M. Djilas, J. Dégardin, E. Dubus, S. Fouquet, R. Benosman, P. Bergonzo, J.-A. Sahelm, S. Picaud, Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility. Biomaterials 67(Supplement C), 73–83 (2015). https://doi.org/10.1016/j.biomaterials.2015.07.018

  311. A. Bendali, C. Agnès, S. Meffert, V. Forster, A. Bongrain, J.-C. Arnault, J.-A. Sahel, A. Offenhäusser, P. Bergonzo, S. Picaud, Distinctive glial and neuronal interfacing on nanocrystalline diamond. PLoS ONE 9(3), e92562 (2014). https://doi.org/10.1371/journal.pone.0092562

    Article  Google Scholar 

  312. G. Piret, C. Hébert, J.-P. Mazellier, L. Rousseau, E. Scorsone, M. Cottance, G. Lissorgues, M.O. Heuschkel, S. Picaud, P. Bergonzo, B. Yvert, 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53(Supplement C), 173–83 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.021

  313. C. Hébert, J.P. Mazellier, E. Scorsone, M. Mermoux, P. Bergonzo, Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71(Supplement C), 27–33 (2014). https://doi.org/10.1016/j.carbon.2013.12.083

  314. F. Vahidpour, L. Curley, I. Biró, M. McDonald, D. Croux, P. Pobedinskas, K. Haenen, M. Giugliano, Z.V. Živcová, L. Kavan, M. Nesládek, All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Physica Status Solidi (a) 214(2), 1532347-n/a (2017). https://doi.org/10.1002/pssa.201532347

  315. M. McDonald, A. Monaco, F. Vahidpour, K. Haenen, M. Giugliano, M. Nesladek, Diamond microelectrode arrays for in vitro neuronal recordings. MRS Commun. 7(3), 683–690 (2017). https://doi.org/10.1557/mrc.2017.62

    Article  CAS  Google Scholar 

  316. V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo, R.B. Jackman, A. Offenhäusser, Boron-Doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc. Mater. 3(2), 283–289 (2014). https://doi.org/10.1002/adhm.201300062

    Article  CAS  Google Scholar 

  317. D. Gaurab, T. Chao, S. Shabnam, U.A. Prabhu, Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes. Mater. Res. Express 3(9), 094001 (2016). https://doi.org/10.1088/2053-1591/3/9/094001

    Article  CAS  Google Scholar 

  318. N. Yang, R. Hoffmann, W. Smirnov, C.E. Nebel, Interface properties of cytochrome c on a nano-textured diamond surface. Diam. Relat. Mater. 20(2), 269–273 (2011). https://doi.org/10.1016/j.diamond.2010.12.012

    Article  CAS  Google Scholar 

  319. N. Yang, W. Smirnov, A. Kriele, R. Hoffmann, C.E. Nebel, Diamond nanotextured surfaces for enhanced protein redox activity. Physica Status Solidi (a) 207(9), 2069–72 (2010). https://doi.org/10.1002/pssa.201000085

  320. B.C. Janegitz, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode. Diam. Relat. Mater. 25, 128–133 (2012). https://doi.org/10.1016/j.diamond.2012.02.023

    Article  CAS  Google Scholar 

  321. A. Liu, Q. Ren, T. Xu, M. Yuan, W. Tang, Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation. Sens. Actuators B: Chem. 162(1), 135–142 (2012). https://doi.org/10.1016/j.snb.2011.12.050

    Article  CAS  Google Scholar 

  322. Y. Yu, Y. Zhou, L. Wu, J. Zhi, Electrochemical biosensor based on boron-doped diamond electrodes with modified surfaces. Int. J. Electrochem. 2012, 10 (2012). https://doi.org/10.1155/2012/567171

    Article  CAS  Google Scholar 

  323. B. Liu, J. Hu, J.S. Foord, Electrochemical detection of DNA hybridization by a zirconia modified diamond electrode. Electrochem. Commun. 19, 46–49 (2012). https://doi.org/10.1016/j.elecom.2012.03.007

    Article  CAS  Google Scholar 

  324. A. Zeng, C. Jin, S.-J. Cho, H.O. Seo, Y.D. Kim, D.C. Lim, D.H. Kim, B. Hong, J.-H. Boo, Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing. Mater. Res. Bull. 47(10), 2713–2716 (2012). https://doi.org/10.1016/j.materresbull.2012.04.041

    Article  CAS  Google Scholar 

  325. W. Wu, R. Xie, L. Bai, Z. Tang, Z. Gu, Direct electrochemistry of shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique. J. Nanosci. Nanotechnol. 12(5), 3903–3908 (2012). https://doi.org/10.1166/jnn.2012.6175

    Article  CAS  Google Scholar 

  326. C.-C. Wu, C.-C. Han, H.-C. Chang, Applications of surface-functionalized diamond nanoparticles for mass-spectrometry-based proteomics. J. Chin. Chem. Soc. 57(3B), 583–594 (2010). https://doi.org/10.1002/jccs.201000082

    Article  CAS  Google Scholar 

  327. X. Fuku, F. Iftikar, E. Hess, E. Iwuoha, P. Baker, Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal. Chim. Acta 730, 49–59 (2012). https://doi.org/10.1016/j.aca.2012.02.025

    Article  CAS  Google Scholar 

  328. R. Hoffmann, A. Kriele, S. Kopta, W. Smirnov, N. Yang, C.E. Nebel, Adsorption of cytochrome c on diamond. physica Status Solidi (a) 207(9), 2073–2077 (2010). https://doi.org/10.1002/pssa.201000043

  329. Y. Zou, D. Lou, K. Dou, L. He, Y. Dong, S. Wang, Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. J. Solid State Electrochem. 20(1), 47–54 (2016). https://doi.org/10.1007/s10008-015-3003-8

    Article  CAS  Google Scholar 

  330. A. Rahim Ruslinda, K. Tanabe, S. Ibori, X. Wang, H. Kawarada, Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens. Bioelectron. 40(1), 277–282 (2013). https://doi.org/10.1016/j.bios.2012.07.048

    Article  CAS  Google Scholar 

  331. M.-J. Song, S.-K. Lee, J.-Y. Lee, J.-H. Kim, D.-S. Lim, Electrochemical sensor based on Au nanoparticles decorated boron-doped diamond electrode using ferrocene-tagged aptamer for proton detection. J. Electroanal. Chem. 677–680, 139–144 (2012). https://doi.org/10.1016/j.jelechem.2012.05.019

    Article  CAS  Google Scholar 

  332. D.T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner, J. Pollet, K.P.F. Janssen, L. Michiels, J. Lammertyn, Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens. Bioelectron. 26(6), 2987–2993 (2011). https://doi.org/10.1016/j.bios.2010.11.053

    Article  CAS  Google Scholar 

  333. O. Babchenko, E. Verveniotis, K. Hruska, M. Ledinsky, A. Kromka, B. Rezek, Direct growth of sub-micron diamond structures. Vacuum 86(6), 693–695 (2012). https://doi.org/10.1016/j.vacuum.2011.08.011

    Article  CAS  Google Scholar 

  334. K. Honda, M. Yoshimura, T.N. Rao, D.A. Tryk, A. Fujishima, K. Yasui, Y. Sakamoto, K. Nishio, H. Masuda, Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. J. Electroanal. Chem. 514(1–2), 35–50 (2001). https://doi.org/10.1016/S0022-0728(01)00614-3

    Article  CAS  Google Scholar 

  335. A. Kriele, O.A. Williams, M. Wolfer, J.J. Hees, W. Smirnov, C.E. Nebel, Formation of nano-pores in nano-crystalline diamond films. Chem. Phys. Lett. 507(4–6), 253–259 (2011). https://doi.org/10.1016/j.cplett.2011.03.089

    Article  CAS  Google Scholar 

  336. F. Weigl, S. Fricker, H.-G. Boyen, C. Dietrich, B. Koslowski, A. Plettl, O. Pursche, P. Ziemann, P. Walther, C. Hartmann, M. Ott, M. Möller, From self-organized masks to nanotips: a new concept for the preparation of densely packed arrays of diamond field emitters. Diam. Relat. Mater. 15(10), 1689–1694 (2006). https://doi.org/10.1016/j.diamond.2006.02.007

    Article  CAS  Google Scholar 

  337. C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam. Relat. Mater. 18(5–8), 910–917 (2009). https://doi.org/10.1016/j.diamond.2008.11.024

    Article  CAS  Google Scholar 

  338. P. Subramanian, Y. Coffinier, D. Steinmüller-Nethl, J. Foord, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim. Acta 110, 4–8 (2013). https://doi.org/10.1016/j.electacta.2012.11.010

    Article  CAS  Google Scholar 

  339. N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013). https://doi.org/10.1016/j.elecom.2012.10.044

    Article  CAS  Google Scholar 

  340. H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.-C. Arnault, P. Bergonzo, J.-P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces. 1(12), 2738–2746 (2009). https://doi.org/10.1021/am900458g

    Article  CAS  Google Scholar 

  341. H. Zhuang, B. Song, T. Staedler, X. Jiang, Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27(19), 11981–11989 (2011). https://doi.org/10.1021/la2024428

    Article  CAS  Google Scholar 

  342. O. Babchenko, A. Kromka, K. Hruska, M. Michalka, J. Potmesil, M. Vanecek, Nanostructuring of diamond films using self-assembled nanoparticles. Cent. Eur. J. Phys. 7(2), 310–314 (2009). https://doi.org/10.2478/s11534-009-0026-8

    Article  CAS  Google Scholar 

  343. G. Powch, A. Jain, In Directed Self Assembly: a Novel, High Speed Method of Nanocoating Ultra-thin Films and Monolayers of Particles, 2012 NSTI Nanotechnology Conference and Expo, Santa Clara, CA (CRC Press: Santa Clara, CA, 2012), pp. 474–7

    Google Scholar 

  344. H. Sim, S.-I. Hong, S.-K. Lee, D.-S. Lim, J.-E. Jin, S.-W. Hwang, Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH)2 dendritic architectures. J. Korean Phys. Soc. 60(5), 836–841 (2012). https://doi.org/10.3938/jkps.60.836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoffrey W. Nelson or John S. Foord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lounasvuori, M.M., Nelson, G.W., Foord, J.S. (2019). Nanoparticle-Based Diamond Electrodes. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_9

Download citation

Publish with us

Policies and ethics