Skip to main content

Redefining the Unit of Mass

  • Chapter
  • First Online:
  • 433 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 155))

Abstract

The problem in defining a measurement unit in terms of an artefact is the long time constancy of the quantity contained in the artefact. Maxwell James Clark was perhaps the first scientist to oppose to defining a unit in terms of an artefact. He said “If we wish to obtain standard of length, time and mass, which shall be absolutely permanent, we must not seek them in dimension, motion, and mass of a planet but in terms of wavelength, period of vibration and the absolute mass of the imperishable and unalterable and perfectly similar molecules”. Max Planck went even further and advocated that units of measurements should be defined in terms of fundamental constants of nature instead of atoms or molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. CODATA Bull. 63 (1986)

    Google Scholar 

  2. R.S. Davis, P. Barat, M. Stock, A brief history of the unit of mass: continuity of successive definitions of the kilogram. Metrologia 53, A-12–A-18 (2016)

    Google Scholar 

  3. H. Moreau, Le Système Métrique, Paris, Chiron (1975)

    Google Scholar 

  4. A. Birembaut, Les deux déterminations de l’unité de masse du système métrique. Rev. Hist. Sci. Leurs Appl. 12, 25–54 (1959)

    Google Scholar 

  5. J. Trallès, Rapport sur l’unité de poids du système métrique décimal, d’après le travail de M Lefèvre-Gineau Base du Système Métrique Décimal ed by P. Méchain, J.-B. Delambre, vol. 3 (Paris, Baudouin, 1810), pp. 558–580

    Google Scholar 

  6. D. McDonald, L.B. Hunt, A history of platinum and its allied metals (Johnson Matthey, London, 1982)

    Google Scholar 

  7. W.H. Miller, On the construction of the new imperial standard pound, and its copies of platinum; and on the comparison of the imperial standard pound with the kilogramme des archives. Phil. Trans. R. Soc. A 146, 753–946 (1856)

    Article  Google Scholar 

  8. R.S. Davis, The SI unit of mass Metrologia 40, 299–305 (2003)

    Article  ADS  Google Scholar 

  9. V. Stott, The millilitre nature 124, 622–623 (1929)

    Article  Google Scholar 

  10. T. Quinn, From artefacts to atoms (Oxford University Press, New York, 2012)

    MATH  Google Scholar 

  11. O.-J. Broch, Rapport de la Commission Mixte chargée de la comparaison du nouveau prototype du kilogramme avec le kilogramme des archives de France Trav. Mem. Bur. Int. Poids Mes. 4, 1–27 (1885)

    Google Scholar 

  12. 1901 Resolution: declaration on the unit of mass and on the definition of weight CR CGPM, vol. 3 (1901), p. 70

    Google Scholar 

  13. www.bipm.org/en/publications/mises-en-pratique/kilogram.html

  14. Procès-Verbaux du CIPM (1937), p. 62

    Google Scholar 

  15. A. Bonhoure, Kilogrammes prototypes Trav. Mem. Bur Int. Poids Mes. 22, C1–C82 (1966)

    Google Scholar 

  16. C. Guillaume (ed.), La Création du Bureau International des Poids et Mesures et Son OEuvre (Gautier-Villars, Paris, 1927)

    Google Scholar 

  17. CR CGPM, vol. 11 (1960), p. 25

    Google Scholar 

  18. G. Girard, The third periodic verification of national prototypes of the kilogram. Metrologia 31, 317–336 (1994)

    Article  ADS  Google Scholar 

  19. M. Stock et al., Calibration campaign against the international prototype of the kilogram in anticipation of the redefinition of the kilogram part I: comparison of the international prototype with its official copies. Metrologia 52, 538–551 (2015)

    Article  Google Scholar 

  20. T.J. Quinn, Base units of the Système international d’unités, their accuracy, dissemination and international traceability. Metrolgia 31, 515–527 (1995)

    Article  ADS  Google Scholar 

  21. K. Fujii, H. Bettin, P. Becker, E. Massa, O. Rienit, A. Pramann, A. Nicolaus, N. Kuramoto, I. Busch, M. Borys, Realization of the kilogram by the XRCD method method. Metrologia 53, A19–A45 (2016)

    Article  ADS  Google Scholar 

  22. S.E. Virgo, Sci. Prog. 27, 635–661 (1932)

    Google Scholar 

  23. R.D. Deslattes, Ann. Rev. Phys. Chem. 31, 593–607 (1980)

    Article  Google Scholar 

  24. J.P. Mathieu, Cahiers of histoire et philosphies des sciences 9, 1–109 (1984)

    Google Scholar 

  25. G. Mana, G. Zosi, Rev. Nuovo Cimento 18, 1–23 (1995)

    Article  Google Scholar 

  26. P. Becker, H. Bettin, L. Koenders, J. Martin, A. Nicolause, S. Rottger, The silicon path to the kilogram. PTB Mitteilungen 106, 321–329 (1996)

    Google Scholar 

  27. P. Becker, Metrologia 38, 85–86 (2001)

    Article  ADS  Google Scholar 

  28. P. Becker, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal. Metrologia 40, 366–375 (2003)

    Article  ADS  Google Scholar 

  29. J. Perrin, C.R. Acad. Sci. (Paris) 149, 477–479 (1909)

    Google Scholar 

  30. J. Perrin, C.R. Acad. Sci. (Paris) 152, 1380–1382 (1911)

    Google Scholar 

  31. E. Rutherford, H. Geiger, Phys. Zeits 10, 1–6 (1909)

    Google Scholar 

  32. P.L. DuNouy, Science 59, 580–582 (1924)

    Article  ADS  Google Scholar 

  33. J.A. Bearden, Phys. Rev. 37, 1210–1229 (1931)

    Article  ADS  Google Scholar 

  34. P.J. Mohr, B.N. Taylor, CODATA 2006. Rev. Mod. Phys. 80 (2008)

    Google Scholar 

  35. Glaser Michel, Tracing of atomic mass unit to the kilogram by ion accumulation. Metrologia 40, 376–386 (2003)

    Article  Google Scholar 

  36. C. Schiegel, F. Scholtz, M. Glasser, G. Bethke, Accumulation of 38 mg of bismuth in a cylindrical collector from a 2.5 mA ion beam. Metrologia 44, 24–28 (2007)

    Google Scholar 

  37. A. Eichenberger, B. Jeckmann, P. Richard, Tracing Plank constant by electro-mechanical methods. Metrologia 40, 356–365 (2003)

    Article  ADS  Google Scholar 

  38. D.B. Sullivan, N.V. Friedrich, Can superconductivity contribute to the determination of the absolute ampere. IEEE Trans. Magn. 13, 396–399 (1977)

    Article  ADS  Google Scholar 

  39. B.P. Kibble, Realising the ampere by levitating a super conducting mass—a suggested procedure. IEEE Trans. Instrum. Meas. 32, 144 (1983)

    Article  Google Scholar 

  40. F. Shiota, K. Hara, A study of a super-conducting magnetic levitation system for absolute determination of magnetic flux quantum. IEEE Trans. Instrum. Meas. 36, 271–274 (1987)

    Article  Google Scholar 

  41. F. Shiota, Y. Miki, A. Namba, Y. Nezu, Y. Sakamoto, T. Morokuma, K. Hara, Absolute determination of the magnetic flux quantum using super-conducting magnetic levitation. IEEE Trans. Instrum. Meas. 44, 583–586 (1995)

    Article  Google Scholar 

  42. E.T. Frantsuz, Y.D. Gorchakov, V.M. Khavinson, Measurement of magnetic flux quantum, Planck constant and elementary charge at VNIIM. IEEE Trans. Instrum. Meas. 41, 482–485 (1992)

    Article  Google Scholar 

  43. F. Shiota, Y. Miki, Y. Fujii, T. Morokuma, Y. Nezu, Evaluation of equilibrium trajectory of super-conducting magnetic levitation for the future of kg unit of mass. IEEE Trans. Instrum. Meas. 49, 1117–1121 (2000)

    Article  Google Scholar 

  44. Y. Fujii, Y. Miki, F. Shiota, T. Morokuma, Mechanism for levetiated super-conductor experiment. IEEE Trans. Instrum. Meas. 50, 580–582 (2001)

    Article  Google Scholar 

  45. K. Riski, P. Heikkinen, H. Kajastie, J. Manninen, H. Rossi, K. Nummila, E. Frantsuz, V. Khavinson, Design of a super-conducting magnetic levitation system, in Proceedings IMEKO TC3 2001 (2001), pp. 239–246

    Google Scholar 

  46. V. Bego, Determination of the kilogram by means of the voltage balances. Metrologia 25, 127–133 (1988)

    Article  ADS  Google Scholar 

  47. P.J. Mohr, B.N. Taylor, CODATA, recommended values of the fundamental physical constants. Rev. Mod. Phys. 72, 351–495 (2000)

    Article  ADS  Google Scholar 

  48. V. Bego, J. Butorac, K. Poljancic, Voltage balance replacing kilogram. IEEE Trans. Instrum. Meas. 44, 579–582 (1995)

    Article  Google Scholar 

  49. T. Funck, V. Sienknecht, Determination of the volt with improved PTB voltage balance. IEEE Trans. Instrum. Meas. 40, 158–161 (1991)

    Article  Google Scholar 

  50. V. Bego, J. Butorac, D. Ilic, Realization of the kilogram by measuring at 100 kV voltage balance. IEEE Trans. Instrum. Meas. 48, 212–215 (1999)

    Article  Google Scholar 

  51. B.P. Kibble, I.A. Robinson, J.H. Belliss, Re-defining the kilogram via a moving coil apparatus, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest (1990), pp. 178–179

    Google Scholar 

  52. B.P. Kibble, I.A. Robinson, J.H. Belliss, The new NPL moving coil watt balance—a progress report, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest (1992), pp. 8–9

    Google Scholar 

  53. I.A. Robinson, B.P. Kibble, The NPL moving-coil apparatus for measuring Planck’s constant and monitoring the kilogram. IEEE Trans. Instrum. Meas. 46, 596–600 (1997)

    Article  Google Scholar 

  54. B.P. Kibble, R.C. Smith, I.A. Robinson, The NPL moving coil ampere determination. IEEE Trans. Instrum. Meas. 32, 141–143 (1983)

    Article  Google Scholar 

  55. I.A. Robinson, B.P. Kibble, Progress in relating the kilogram to Planck’s constant, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest (2002), pp. 574–575

    Google Scholar 

  56. P.T. Olsen, V.E. Bower, W.D. Phillips, E.R. Williams, G.R. Jones, The NBS absolute ampere experiment. IEEE Trans. Instrum. Meas. 34, 175–181 (1985)

    Article  Google Scholar 

  57. P.T. Olsen, R.E. Elmquist, W.D. Phillips, E.R. Williams, G.R. Jones, V.E. Bower, A measurement of the NBS electrical watt in SI units. IEEE Trans. Instrum. Meas. 38, 238–244 (1989)

    Article  Google Scholar 

  58. R.L. Steiner et al., NIST watt balance: progress monitoring the kilogram. IEEE Trans. Instrum. Meas. 46, 601–604 (1997)

    Article  Google Scholar 

  59. E.R. Williams et al., Accurate measurement of the Planck’s constant. Phys. Rev. Lett. 81, 2404–2407 (1998)

    Article  ADS  Google Scholar 

  60. D.B. Newell, J.P. Schwarz, E.R. Williams, Reference standard uncertainties and future of NIST electronic kilogram, in Proceedings of NCSL Workshop and Symposium 1999 (1999), pp. 319–326

    Google Scholar 

  61. W. Beeer et al., A proposal for a new moving coil experiment. IEEE Trans. Instrum. Meas. 48, 192–194 (1999)

    Article  Google Scholar 

  62. W. Beer et al., Status of METAS watt balance experiment. IEEE Trans. Instum. Meas. 52, 626–630 (2003)

    Article  Google Scholar 

  63. R.L. Steiner, Edwin R. Williams, David B. Newell, Ruimin Liu, Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass. Metrologia 42, 431–441 (2005)

    Article  ADS  Google Scholar 

  64. S.K. Mukherjee, A. Choudhary, Unit of mass—new definition. ISI Bull. 24, 288 (1973)

    Google Scholar 

  65. B.N. Taylor, P.J. Mohr, On the definition of the kilogram. Metrologia 36, 63–64 (1999)

    Article  ADS  Google Scholar 

  66. B.N. Taylor, P.J. Mohr, The role of fundamental constants in the international system of units (SI) present and future. IEEE Trans. Instrum. Meas. 50, 563–567 (2001)

    Article  Google Scholar 

  67. J.L. Flowers, B.W. Petley, The kilogram redefinition—an interim solution. Metrologia 42, L31–L34 (2005)

    Article  ADS  Google Scholar 

  68. W. Schwitz, B. Jeckelmann, P. Richard, Towards the a new kilogram definition based on a fundamental constant. C.R. Phys. 5, 881–882 (2004)

    Article  ADS  Google Scholar 

  69. W.K. Clothier, G.J. Sloggett, H. Bairnsfather, M.F. Currey, D.J. Benjamin, A determination of the volt. Metrologia 26, 9 (1989)

    Google Scholar 

  70. B.P. Kibble, I.A. Robinson, J.H. Belliss, A realisation of the SI watt by NPL moving coil balance. Metrologia 27, 173–192 (1990)

    Article  ADS  Google Scholar 

  71. V.E. Bower, R.S. Davis, J. Res. Natl. Bur. Stand (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.V. (2019). Redefining the Unit of Mass. In: Mass Metrology. Springer Series in Materials Science, vol 155. Springer, Cham. https://doi.org/10.1007/978-3-030-12465-6_12

Download citation

Publish with us

Policies and ethics