Cellular Defense Mechanisms Following Nanomaterial Exposure: A Focus on Oxidative Stress and Cytotoxicity

  • Stephen J. Evans
  • Gareth J. Jenkins
  • Shareen H. Doak
  • Martin J. D. CliftEmail author
Part of the NanoScience and Technology book series (NANO)


In response to the significant increase in nanotechnology over the last three decades, and the plethora of engineered nanomaterials (ENMs) now becoming available, understanding as to how nano-sized particles may impact upon human health has become a dominating area of research worldwide since the late 1990’s (Stone et al. in Environmental Health Perspectives, 2017) [1]. Whilst approaches constantly adapt to the increasing number and variety of ENMs produced for a plethora of different applications, the quantity of alternative physico-chemical characteristics, a key factor in the potential hazard of ENMs (Bouwmeester et al. in Nanotoxicology 5:1–11, 2011) [2], is further increasing in number and type.



The authors would like to acknowledge all members of the In Vitro Toxicology group who contribute to the exhaustive scientific discussions.


  1. 1.
    Stone, V., Miller, M.R., Clift, M.J D., Elder, A., Mills, N.L., Moller, P., Schins, R.P.F., Vogel, U., Kreyling, W.G., Jensen, K.A., Kuhlbusch, T.A.J., Schwarze, P.E., Hoet, P., Pietroiusti, A., De Vizcaya-Ruiz, A., Baeza-Squiban, A., Tran, L., Cassee, F.R.: Nanomaterials vs ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ. Health Perspect. (2017)
  2. 2.
    Bouwmeester, H., Lynch, I., Marvin, H.J.P., Dawson, K.A., Berges, M., Braguer, D., Byrne, H.J., Casey, A., Chambers, G., Clift, M.J.D., Elia, G., Fernandes, T.F., Fjellsbø, L.B., Hatto, P., Juillerat, L., Klein, C., Kreyling, W.G., Nickel, C., Riediker, M., Stone, V.: Minimal analytical characterisation of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5, 1–11 (2011)Google Scholar
  3. 3.
    Clift, M.J.D., Gehr, P. Rothen-Rutishauser, B.: In vitro testing for Nanotoxicology: a valid alternative? Arch. Toxicol. 85, 723–731 (2011)Google Scholar
  4. 4.
    Ferin, J., Oberdorster, G., Penney, D.P.: Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992)Google Scholar
  5. 5.
    Donaldson, K., Tran, C.L.: An introduction to the short-term toxicology of respirable industrial fibres. Mutat. Res./Fundamen. Mol. Mechan. Mutagen. 553, 5–9 (2004)Google Scholar
  6. 6.
    Donaldson, K., Murphy, F.A., Duffin, R., Poland, C.A.: Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 7, 5 (2010)Google Scholar
  7. 7.
    Evans, S.J., Clift, M.J., Singh, N., de Oliveira Mallia, J., Burgum, M., Wills, J.W., Wilkinson, T.S., Jenkins, G.J., Doak, S.H.: Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 4 (2017)Google Scholar
  8. 8.
    Schins, R.P., Knaapen, A.M.: Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19, 189–198 (2007)Google Scholar
  9. 9.
    Limbach, L.K., Li, Y., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M., Gunther, D., Stark, W.J.: Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370–9376 (2005)Google Scholar
  10. 10.
    Clift, M.J.D., Rothen-Rutishauser, B.: Studying the oxidative stress paradigm in vitro: a theoretical and practical perspective. In: Armstrong D., Bharali, D. (eds.) Oxidative Stress and Nanotechnology vol. 1082, pp. 115–133 (2013)Google Scholar
  11. 11.
    Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotech 3, 423–428 (2008)Google Scholar
  12. 12.
    Unfried, K., Albrecht, C., Klotz, L.O., von Mikecz, A., Grether-Beck, S., Schins, R.P.F.: Cellular responses to nanoparticles: target structures and mechanisms. Nanotox 1, 1–20 (2007)Google Scholar
  13. 13.
    Conner, S.D., Schmid, S.L.: Regulated portals of entry into the cell. Nature 422, 37–44 (2003)Google Scholar
  14. 14.
    Gamaley, I.A., Klyubin, I.V.: Roles of reactive oxygen species: signaling and regulation of cellular functions. Int. Rev. Cytol. 188, 203–255 (1999)CrossRefGoogle Scholar
  15. 15.
    Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O.M.: Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180, 248–257 (1977)CrossRefGoogle Scholar
  16. 16.
    Poljsak, B., Šuput, D., Milisav, I.: Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev 11 (2013)Google Scholar
  17. 17.
    Circu, M.L., Aw, T.Y.: Reactive oxygen species, cellular redox systems and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010)CrossRefGoogle Scholar
  18. 18.
    Burton, G.J., Jauniaux, E.: Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 287–299 (2011)CrossRefGoogle Scholar
  19. 19.
    Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., Dong, W.: ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 18 (2016)Google Scholar
  20. 20.
    Vasilaki, A.T., McMillan, D.C.: Lipid peroxidation. In: Schwab, M. (ed.) Encyclopedia of Cancer. Springer, Berlin, Heidelberg (2011)Google Scholar
  21. 21.
    Manke, A., Wang, L., Rojanasakul, Y.: Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. 2013, 15 (2013)CrossRefGoogle Scholar
  22. 22.
    Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., Colombo, R.: Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329, 23–38 (2003)CrossRefGoogle Scholar
  23. 23.
    Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., Wright, C.J., Doak, S.H.: NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891–3914 (2009)CrossRefGoogle Scholar
  24. 24.
    Valko, M., Izakovic, M., Mazur, M., Rhodes, C., Telser, J.: Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 266 (2004)Google Scholar
  25. 25.
    Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M.: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006)CrossRefGoogle Scholar
  26. 26.
    Cooke, M., Evans, M., Dizdrogla, M., Lunec, J.: Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17 (2003)Google Scholar
  27. 27.
    Perreault, F., Pedroso Melegari, S., Henning da Costa, C., de Oliveira Franco Rossetto, A.L., Popovic, R., Gerson Matias, W.: Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci. Total Environ. 441, 117–124 (2012)Google Scholar
  28. 28.
    Siddiqi, N.J., Abdelhalim, M.A.K., El-Ansary, A.K., Alhomida, A.S., Ong, W.: Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J. Neuroinflamm. 9, 1 (2012)CrossRefGoogle Scholar
  29. 29.
    Foldbjerg, R., Dang, D.A., Autrup, H.: Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743–750 (2011)CrossRefGoogle Scholar
  30. 30.
    Kim, S., Choi, J.E., Choi, J., Chung, K.H., Park, K., Yi, J., Ryu, D.Y.: Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23, 1076–1084 (2009)CrossRefGoogle Scholar
  31. 31.
    Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., Dusinska, M.: Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8, 233–278 (2014)CrossRefGoogle Scholar
  32. 32.
    Huang, Y.-W., Wu, C.-H., Aronstam, R.S.: Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3, 4842 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Abdal dayem, A., Hossain, M.K., Lee, S.B., Kim, K., Saha, S.K., Yang, G.-M., Choi, H.Y., Cho, S.-G.: The role of reactive oxygen species (ros) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18, 120 (2017)Google Scholar
  34. 34.
    Sun, S., Wang, Q., Giang, A., Cheng, C., Soo, C., Wang, C.-Y., Liau, L., Chiu, R.: Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-kB. J. Neurooncol. 101 (2011)Google Scholar
  35. 35.
    Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., Schiestl, R.H.: Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Can. Res. 69, 8784–8789 (2009)CrossRefGoogle Scholar
  36. 36.
    Tulinska, J., Kazimirova, A., Kuricova, M., Barancokova, M., Liskova, A., Neubauerova, E., Drlickova, M., Ciampor, F., Vavra, I., Bilanicova, D., Pojana, G., Staruchova, M., Horvathova, M., Jahnova, E., Volkovova, K., Bartusova, M., Cagalinec, M., Dusinska, M.: Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology 1, 33–43 (2015)CrossRefGoogle Scholar
  37. 37.
    Kaminskyy, V.O., Zhivotovsky, B.: Free radicals in cross talk between autophagy and apoptosis. Antioxid. Redox. Signal. 21, 86–102 (2014)CrossRefGoogle Scholar
  38. 38.
    Redza-Dutordoir, M., Averill-Bates, D.A.: Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)Mol. Cell Res. 1863, 2977–2992 (2016)Google Scholar
  39. 39.
    Vandenabeele, P., Galluzzi, L., Berghe, T.V., Kroemer, G.: Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephen J. Evans
    • 1
  • Gareth J. Jenkins
    • 1
  • Shareen H. Doak
    • 1
  • Martin J. D. Clift
    • 1
    Email author
  1. 1.In Vitro Toxicology Group, Swansea University Medical SchoolInstitute of Life SciencesSwanseaUK

Personalised recommendations