Skip to main content

Molecular Basis and Regulation of Store-Operated Calcium Entry

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism for Ca2+ influx in mammalian cells with important physiological implications. Since the discovery of SOCE more than three decades ago, the mechanism that communicates the information about the amount of Ca2+ accumulated in the intracellular Ca2+ stores to the plasma membrane channels and the nature of these channels have been matters of intense investigation and debate. The stromal interaction molecule-1 (STIM1) has been identified as the Ca2+ sensor of the intracellular Ca2+ compartments that activates the store-operated channels. STIM1 regulates two types of store-dependent channels: the Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 subunits, that conduct the highly Ca2+ selective current I CRAC and the cation permeable store-operated Ca2+ (SOC) channels, which consist of Orai1 and TRPC1 proteins and conduct the non-selective current I SOC. While the crystal structure of Drosophila CRAC channel has already been solved, the architecture of the SOC channels still remains unclear. The dynamic interaction of STIM1 with the store-operated channels is modulated by a number of proteins that either support the formation of the functional STIM1-channel complex or protect the cell against Ca2+ overload.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

[Ca2+]c :

cytosolic free Ca2+ concentration

AMPA:

alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate

CRAC channels:

Ca2+-release activated Ca2+ channels

CTID:

C-terminal inhibitory domain

ER:

endoplasmic reticulum

IP3 :

inositol 1,4,5-trisphosphate

NAADP:

nicotinic acid adenine dinucleotide phosphate

NMDA:

N-methyl-D-aspartate

OAG:

1-oleoyl-2-acetyl-sn-glycerol

PM:

plasma membrane

ROC:

receptor-operated channels

ROS:

reactive oxygen species

SERCA:

sarco/endoplasmic reticulum Ca2+ ATPase

SMOC:

second messenger-operated channels

SOAP:

STIM1-Orai1 Association Pocket

SOC channels:

store-operated Ca2+ channels

SOCE:

store-operated Ca2+ entry

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    CAS  PubMed  Google Scholar 

  2. Bobe R, Bredoux R, Wuytack F, Quarck R, Kovacs T, Papp B, Corvazier E, Magnier C, Enouf J (1994) The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem 269(2):1417–1424

    CAS  PubMed  Google Scholar 

  3. Wuytack F, Papp B, Verboomen H, Raeymaekers L, Dode L, Bobe R, Enouf J, Bokkala S, Authi KS, Casteels R (1994) A sarco/endoplasmic reticulum Ca2+-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem 269(2):1410–1416

    CAS  PubMed  Google Scholar 

  4. Cavallini L, Coassin M, Alexandre A (1995) Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin. Biochem J 310(Pt 2):449–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lopez JJ, Camello-Almaraz C, Pariente JA, Salido GM, Rosado JA (2005) Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets. Biochem J 390(Pt 1):243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juska A, Redondo PC, Rosado JA, Salido GM (2005) Dynamics of calcium fluxes in human platelets assessed in calcium-free medium. Biochem Biophys Res Commun 334(3):779–786

    Article  CAS  PubMed  Google Scholar 

  7. Brini M, Carafoli E (2011) The plasma membrane Ca(2)+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3(2)

    Google Scholar 

  8. Cancela JM (2001) Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu Rev Physiol 63:99–117

    Article  CAS  PubMed  Google Scholar 

  9. Choe CU, Ehrlich BE (2006) The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006(363):re15

    Article  PubMed  Google Scholar 

  10. Lam AK, Galione A (2013) The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim Biophys Acta 1833(11):2542–2559

    Article  CAS  PubMed  Google Scholar 

  11. Loh YP, Tam WW, Russell JT (1984) Measurement of delta pH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe. J Biol Chem 259(13):8238–8245

    CAS  PubMed  Google Scholar 

  12. Koivusalo M, Steinberg BE, Mason D, Grinstein S (2011) In situ measurement of the electrical potential across the lysosomal membrane using FRET. Traffic 12(8):972–982

    Article  CAS  PubMed  Google Scholar 

  13. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25(3):533–535

    Article  CAS  PubMed  Google Scholar 

  15. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57(4):411–425

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki Y, Inoue T, Ra C (2010) L-type Ca2+ channels: a new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells. Mol Immunol 47(4):640–648

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki Y, Yoshimaru T, Inoue T, Ra C (2009) Ca v 1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption. Mol Immunol 46(11–12):2370–2380

    Article  CAS  PubMed  Google Scholar 

  18. Yoshimaru T, Suzuki Y, Inoue T, Ra C (2009) L-type Ca2+ channels in mast cells: activation by membrane depolarization and distinct roles in regulating mediator release from store-operated Ca2+ channels. Mol Immunol 46(7):1267–1277

    Article  CAS  PubMed  Google Scholar 

  19. Matza D, Flavell RA (2009) Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast. Immunol Rev 231(1):257–264

    Article  CAS  PubMed  Google Scholar 

  20. Dionisio N, Smani T, Woodard GE, Castellano A, Salido GM, Rosado JA (2015) Homer proteins mediate the interaction between STIM1 and Cav1.2 channels. Biochim Biophys Acta 1853(5):1145–1153

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330(6000):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sage SO (1992) Three routes for receptor-mediated Ca2+ entry. Curr Biol 2(6):312–314

    Article  CAS  PubMed  Google Scholar 

  23. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

    Article  CAS  PubMed  Google Scholar 

  24. Kyrozis A, Goldstein PA, Heath MJ, MacDermott AB (1995) Calcium entry through a subpopulation of AMPA receptors desensitized neighbouring NMDA receptors in rat dorsal horn neurons. J Physiol 485(Pt 2):373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salazar H, Eibl C, Chebli M, Plested A (2017) Mechanism of partial agonism in AMPA-type glutamate receptors. Nat Commun 8:14327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI (2017) Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549(7670):60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    Article  CAS  PubMed  Google Scholar 

  28. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278(31):29031–29040

    Article  CAS  PubMed  Google Scholar 

  29. Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA (2012) Capacitative and non-capacitative signaling complexes in human platelets. Biochim Biophys Acta 1823(8):1242–1251

    Article  CAS  PubMed  Google Scholar 

  30. Jardin I, Gomez LJ, Salido GM, Rosado JA (2009) Dynamic interaction of hTRPC6 with the Orai1/STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420:267–276

    Article  CAS  PubMed  Google Scholar 

  31. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shuttleworth TJ (2009) Arachidonic acid, ARC channels, and Orai proteins. Cell Calcium 45(6):602–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shuttleworth TJ, Thompson JL, Mignen O (2007) STIM1 and the noncapacitative ARC channels. Cell Calcium 42(2):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shuttleworth TJ, Thompson JL, Mignen O (2004) ARC channels: a novel pathway for receptor-activated calcium entry. Physiology (Bethesda) 19:355–361

    CAS  Google Scholar 

  35. Albarran L, Lopez JJ, Woodard GE, Salido GM, Rosado JA (2016) Store-operated Ca2+ entry-associated regulatory factor (SARAF) plays an important role in the regulation of arachidonate-regulated Ca2+ (ARC) channels. J Biol Chem 291(13):6982–6988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455(1):157–168

    Article  CAS  PubMed  Google Scholar 

  37. Jardin I, Redondo PC, Salido GM, Rosado JA (2008) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783(1):84–97

    Article  CAS  PubMed  Google Scholar 

  38. Putney JW (2011) The physiological function of store-operated calcium entry. Neurochem Res 36(7):1157–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Putney JW Jr (2005) Capacitative calcium entry: sensing the calcium stores. J Cell Biol 169(3):381–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  41. Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA (2011) STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 286(14):12257–12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol 317:263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwan CY, Takemura H, Obie JF, Thastrup O, Putney JW Jr (1990) Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol 258(6 Pt 1):C1006–C1015

    Article  CAS  PubMed  Google Scholar 

  44. Rosado JA (2006) Discovering the mechanism of capacitative calcium entry. Am J Physiol Cell Physiol 291(6):C1104–C1106

    Article  CAS  PubMed  Google Scholar 

  45. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103(11):1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Darbellay B, Arnaudeau S, Konig S, Jousset H, Bader C, Demaurex N, Bernheim L (2009) STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284(8):5370–5380

    Article  CAS  PubMed  Google Scholar 

  47. Feske S (2011) Immunodeficiency due to defects in store-operated calcium entry. Ann NY Acad Sci 1238:74–90

    Article  CAS  PubMed  Google Scholar 

  48. Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, Williams RS, Eu JP, Rosenberg P (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10(6):688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshida J, Iwabuchi K, Matsui T, Ishibashi T, Masuoka T, Nishio M (2012) Knockdown of stromal interaction molecule 1 (STIM1) suppresses store-operated calcium entry, cell proliferation and tumorigenicity in human epidermoid carcinoma A431 cells. Biochem Pharmacol 84(12):1592–1603

    Article  CAS  PubMed  Google Scholar 

  50. Avila-Medina J, Calderon-Sanchez E, Gonzalez-Rodriguez P, Monje-Quiroga F, Rosado JA, Castellano A, Ordonez A, Smani T (2016) Orai1 and TRPC1 proteins Co-localize with CaV1.2 channels to form a signal complex in vascular smooth muscle cells. J Biol Chem 291(40):21148–21159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Diez-Bello R, Jardin I, Salido GM, Rosado JA (2017) Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochim Biophys Acta 1864(6):1064–1070

    Article  CAS  Google Scholar 

  52. Galan C, Zbidi H, Bartegi A, Salido GM, Rosado JA (2009) STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 490(2):137–144

    Article  CAS  PubMed  Google Scholar 

  53. Albarran L, Lopez JJ, Salido GM, Rosado JA (2016) Historical overview of store-operated Ca2+ entry. Adv Exp Med Biol 898:3–24

    Article  CAS  PubMed  Google Scholar 

  54. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134(3):771–782

    Article  CAS  PubMed  Google Scholar 

  57. Parker NJ, Begley CG, Smith PJ, Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37(2):253–256

    Article  CAS  PubMed  Google Scholar 

  58. Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M (1997) GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 57(20):4493–4497

    CAS  PubMed  Google Scholar 

  59. Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481(1):147–155

    Article  CAS  PubMed  Google Scholar 

  60. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264

    Article  CAS  PubMed  Google Scholar 

  61. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proc Natl Acad Sci USA 103(11):4040–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jardin I, Lopez JJ, Redondo PC, Salido GM, Rosado JA (2009) Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. Biochim Biophys Acta 1793(10):1614–1622

    Article  CAS  PubMed  Google Scholar 

  63. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135(1):110–122

    Article  PubMed  Google Scholar 

  64. Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369(1):240–246

    Article  CAS  PubMed  Google Scholar 

  65. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103(45):16704–16709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Derler I, Fahrner M, Muik M, Lackner B, Schindl R, Groschner K, Romanin C (2009) A Ca2+ release-activated Ca2+ (CRAC) Modulatory Domain (CMD) within STIM1 mediates fast Ca2+-dependent Inactivation of ORAI1 channels. J Biol Chem 284(37):24933–24938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jardin I, Dionisio N, Frischauf I, Berna-Erro A, Woodard GE, Lopez JJ, Salido GM, Rosado JA (2013) The polybasic lysine-rich domain of plasma membrane-resident STIM1 is essential for the modulation of store-operated divalent cation entry by extracellular calcium. Cell Signal 25(5):1328–1337

    Article  CAS  PubMed  Google Scholar 

  68. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Z, Lu J, Xu P, Xie X, Chen L, Xu T (2007) Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 282(40):29448–29456

    Article  CAS  PubMed  Google Scholar 

  70. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  CAS  PubMed  Google Scholar 

  71. Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284(13):8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Muik M, Fahrner M, Schindl R, Stathopulos P, Frischauf I, Derler I, Plenk P, Lackner B, Groschner K, Ikura M, Romanin C (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30(9):1678–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385(1):49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109(15):5657–5662

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nwokonko RM, Cai X, Loktionova NA, Wang Y, Zhou Y, Gill DL (2017) The STIM-Orai pathway: conformational coupling between STIM and Orai in the activation of store-operated Ca2+ entry. Adv Exp Med Biol 993:83–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jha A, Ahuja M, Maleth J, Moreno CM, Yuan JP, Kim MS, Muallem S (2013) The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. J Cell Biol 202(1):71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357(Pt 3):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lopez E, Jardin I, Berna-Erro A, Bermejo N, Salido GM, Sage SO, Rosado JA, Redondo PC (2012) STIM1 tyrosine-phosphorylation is required for STIM1-Orai1 association in human platelets. Cell Signal 24(6):1315–1322

    Article  CAS  PubMed  Google Scholar 

  80. Williams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596(1):131–137

    Article  CAS  PubMed  Google Scholar 

  81. Horinouchi T, Higashi T, Higa T, Terada K, Mai Y, Aoyagi H, Hatate C, Nepal P, Horiguchi M, Harada T, Miwa S (2012) Different binding property of STIM1 and its novel splice variant STIM1L to Orai1, TRPC3, and TRPC6 channels. Biochem Biophys Res Commun 428(2):252–258

    Article  CAS  PubMed  Google Scholar 

  82. Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J Cell Biol 194(2):335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA (2012) STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 52(1):136–147

    Article  CAS  PubMed  Google Scholar 

  84. Rosado JA, Diez R, Smani T, Jardin I (2015) STIM and Orai1 variants in store-operated calcium entry. Front Pharmacol 6:325

    PubMed  Google Scholar 

  85. Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry. Curr Biol 16(14):1465–1470

    Article  CAS  PubMed  Google Scholar 

  86. Wang JY, Sun J, Huang MY, Wang YS, Hou MF, Sun Y, He H, Krishna N, Chiu SJ, Lin S, Yang S, Chang WC (2014) STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene 34:4358–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rana A, Yen M, Sadaghiani AM, Malmersjo S, Park CY, Dolmetsch RE, Lewis RS (2015) Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J Cell Biol 209(5):653–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ercan E, Chung SH, Bhardwaj R, Seedorf M (2012) Di-arginine signals and the K-rich domain retain the Ca(2)(+) sensor STIM1 in the endoplasmic reticulum. Traffic 13(7):992–1003

    Article  CAS  PubMed  Google Scholar 

  89. Bauer MC, O'Connell D, Cahill DJ, Linse S (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47(23):6089–6091

    Article  CAS  PubMed  Google Scholar 

  90. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2(93):ra67

    Article  PubMed  Google Scholar 

  91. Schuhmann MK, Stegner D, Berna-Erro A, Bittner S, Braun A, Kleinschnitz C, Stoll G, Wiendl H, Meuth SG, Nieswandt B (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 184(3):1536–1542

    Article  CAS  PubMed  Google Scholar 

  92. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9(4):432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S, Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285(29):22437–22447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dionisio N, Galan C, Jardin I, Salido GM, Rosado JA (2011) Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. Biochim Biophys Acta 1813(3):431–437

    Article  CAS  PubMed  Google Scholar 

  96. Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579(Pt 3):703–715

    Article  CAS  PubMed  Google Scholar 

  97. Miederer AM, Alansary D, Schwar G, Lee PH, Jung M, Helms V, Niemeyer BA (2015) A STIM2 splice variant negatively regulates store-operated calcium entry. Nat Commun 6:6899

    Article  CAS  PubMed  Google Scholar 

  98. Berna-Erro A, Jardin I, Salido GM, Rosado JA (2017) Role of STIM2 in cell function and physiopathology. J Physiol 595(10):3111–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou Y, Nwokonko RM, Cai X, Loktionova NA, Abdulqadir R, Xin P, Niemeyer BA, Wang Y, Trebak M, Gill DL (2018) Cross-linking of Orai1 channels by STIM proteins. Proc Natl Acad Sci USA 115(15):E3398–E3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281(47):35855–35862

    Article  CAS  PubMed  Google Scholar 

  101. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Subedi KP, Ong HL, Son GY, Liu X, Ambudkar IS (2018) STIM2 induces activated conformation of STIM1 to control Orai1 function in ER-PM junctions. Cell Rep 23(2): 522–534

    Article  CAS  PubMed  Google Scholar 

  103. Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW, Trebak M (2015) Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8(387):ra74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ambudkar IS, de Souza LB, Ong HL (2017) TRPC1, Orai1, and STIM1 in SOCE: friends in tight spaces. Cell Calcium 63:33–39

    Article  CAS  PubMed  Google Scholar 

  105. Chung WY, Jha A, Ahuja M, Muallem S (2017) Ca2+ influx at the ER/PM junctions. Cell Calcium 63:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283(37):25296–25304

    Article  CAS  PubMed  Google Scholar 

  107. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  CAS  PubMed  Google Scholar 

  108. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  109. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 103(24):9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo RW, Huang L (2008) New insights into the activation mechanism of store-operated calcium channels: roles of STIM and Orai. J Zhejiang Univ Sci B 9(8):591–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281(34):24979–24990

    Article  CAS  PubMed  Google Scholar 

  113. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  115. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281(30):20661–20665

    Article  CAS  PubMed  Google Scholar 

  116. Derler I, Plenk P, Fahrner M, Muik M, Jardin I, Schindl R, Gruber HJ, Groschner K, Romanin C (2013) The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 288(40):29025–29034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Palty R, Isacoff EY (2015) Cooperative binding of Stromal Interaction Molecule 1 (STIM1) to the N and C termini of calcium release-activated calcium modulator 1 (Orai1). J Biol Chem 291:334–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Palty R, Stanley C, Isacoff EY (2015) Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating. Cell Res 25(8):963–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456(7218):116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y, Sato C (2009) Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284(20):13676–13685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586(2):419–425

    Article  CAS  PubMed  Google Scholar 

  122. Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thompson JL, Shuttleworth TJ (2013) How many Orai’s does it take to make a CRAC channel? Sci Rep 3:1961

    Article  PubMed  PubMed Central  Google Scholar 

  124. Peinelt C, Lis A, Beck A, Fleig A, Penner R (2008) 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 586(13):3061–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yamashita M, Navarro-Borelly L, McNally BA, Prakriya M (2007) Orai1 mutations alter ion permeation and Ca2+-dependent fast inactivation of CRAC channels: evidence for coupling of permeation and gating. J Gen Physiol 130(5):525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Endo Y, Noguchi S, Hara Y, Hayashi YK, Motomura K, Miyatake S, Murakami N, Tanaka S, Yamashita S, Kizu R, Bamba M, Goto Y, Matsumoto N, Nonaka I, Nishino I (2015) Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca(2)(+) channels. Hum Mol Genet 24(3):637–648

    Article  CAS  PubMed  Google Scholar 

  127. Nesin V, Wiley G, Kousi M, Ong EC, Lehmann T, Nicholl DJ, Suri M, Shahrizaila N, Katsanis N, Gaffney PM, Wierenga KJ, Tsiokas L (2014) Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 111(11):4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frischauf I, Muik M, Derler I, Bergsmann J, Fahrner M, Schindl R, Groschner K, Romanin C (2009) Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 284(32):21696–21706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17(9):794–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287(5458):1647–1651

    Article  CAS  PubMed  Google Scholar 

  131. Diver JM, Sage SO, Rosado JA (2001) The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx. Cell Calcium 30(5):323–329

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, Deng X, Zhou Y, Hendron E, Mancarella S, Ritchie MF, Tang XD, Baba Y, Kurosaki T, Mori Y, Soboloff J, Gill DL (2009) STIM protein coupling in the activation of Orai channels. Proc Natl Acad Sci USA 106(18):7391–7396

    Article  PubMed  PubMed Central  Google Scholar 

  133. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536(Pt 1):3–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wei M, Zhou Y, Sun A, Ma G, He L, Zhou L, Zhang S, Liu J, Zhang SL, Gill DL, Wang Y (2016) Molecular mechanisms underlying inhibition of STIM1-Orai1-mediated Ca2+ entry induced by 2-aminoethoxydiphenyl borate. Pflugers Arch 468(11–12):2061–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lopez JJ, Jardin I, Cantonero Chamorro C, Duran ML, Tarancon Rubio MJ, Reyes Panadero M, Jimenez F, Montero R, Gonzalez MJ, Martinez M, Hernandez MJ, Brull JM, Corbacho AJ, Delgado E, Granados MP, Gomez-Gordo L, Rosado JA, Redondo PC (2018) Involvement of stanniocalcins in the deregulation of glycaemia in obese mice and type 2 diabetic patients. J Cell Mol Med 22(1):684–694

    Article  CAS  PubMed  Google Scholar 

  136. Fahrner M, Derler I, Jardin I, Romanin C (2013) The STIM1/Orai signaling machinery. Channels (Austin) 7(5):330–343

    Article  CAS  Google Scholar 

  137. Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3(148):ra82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284(2):728–732

    Article  CAS  PubMed  Google Scholar 

  139. Ma G, Wei M, He L, Liu C, Wu B, Zhang SL, Jing J, Liang X, Senes A, Tan P, Li S, Sun A, Bi Y, Zhong L, Si H, Shen Y, Li M, Lee MS, Zhou W, Wang J, Wang Y, Zhou Y (2015) Inside-out Ca2+ signalling prompted by STIM1 conformational switch. Nat Commun 6:7826

    Article  CAS  PubMed  Google Scholar 

  140. Fahrner M, Muik M, Schindl R, Butorac C, Stathopulos P, Zheng L, Jardin I, Ikura M, Romanin C (2014) A coiled-coil clamp controls both conformation and clustering of Stromal Interaction Molecule 1 (STIM1). J Biol Chem 289(48):33231–33244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4:2963

    Article  CAS  PubMed  Google Scholar 

  142. Hirve N, Rajanikanth V, Hogan PG, Gudlur A (2018) Coiled-coil formation conveys a STIM1 signal from ER Lumen to cytoplasm. Cell Rep 22(1):72–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. McNally BA, Somasundaram A, Jairaman A, Yamashita M, Prakriya M (2013) The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 591(11):2833–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gudlur A, Quintana A, Zhou Y, Hirve N, Mahapatra S, Hogan PG (2014) STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat Commun 5:5164

    Article  CAS  PubMed  Google Scholar 

  145. Hogan PG, Rao A (2015) Store-operated calcium entry: mechanisms and modulation. Biochem Biophys Res Commun 460(1):40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2): 757–810

    Article  CAS  PubMed  Google Scholar 

  147. Brechard S, Melchior C, Plancon S, Schenten V, Tschirhart EJ (2008) Store-operated Ca2+ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes. Cell Calcium 44(5):492–506

    Article  CAS  PubMed  Google Scholar 

  148. Galan C, Dionisio N, Smani T, Salido GM, Rosado JA (2011) The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 82(4):400–410

    Article  CAS  PubMed  Google Scholar 

  149. Sabourin J, Le Gal L, Saurwein L, Haefliger JA, Raddatz E, Allagnat F (2015) Store-operated Ca2+ entry mediated by Orai1 and TRPC1 participates to insulin secretion in Rat beta-Cells. J Biol Chem 290(51):30530–30539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sampieri A, Zepeda A, Saldaña C, Salgado A, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 44(5):479–491

    Article  CAS  Google Scholar 

  151. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287

    Article  CAS  PubMed  Google Scholar 

  152. Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8(4):643–651

    Article  CAS  PubMed  Google Scholar 

  153. Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8(4):631–642

    Article  CAS  PubMed  Google Scholar 

  154. Minke B (1977) Drosophila mutant with a transducer defect. Biophys Struct Mech 3(1): 59–64

    Article  CAS  PubMed  Google Scholar 

  155. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92(21):9652–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373(3):193–198

    Article  CAS  PubMed  Google Scholar 

  157. Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311(Pt 1):41–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    Article  CAS  PubMed  Google Scholar 

  159. Flockerzi V, Nilius B (2014) TRPs: truly remarkable proteins. Handb Exp Pharmacol 222: 1–12

    Article  CAS  PubMed  Google Scholar 

  160. Salido GM, Jardin I, Rosado JA (2011) The TRPC Ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv Exp Med Biol 704:413–433

    Article  CAS  PubMed  Google Scholar 

  161. Montell C (2003) The venerable inveterate invertebrate TRP channels. Cell Calcium 33(5–6):409–417

    Article  CAS  PubMed  Google Scholar 

  162. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108(5):595–598

    Article  CAS  PubMed  Google Scholar 

  163. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277(44):42157–42163

    Article  CAS  PubMed  Google Scholar 

  164. Gregorio-Teruel L, Valente P, Gonzalez-Ros JM, Fernandez-Ballester G, Ferrer-Montiel A (2014) Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation. J Gen Physiol 143(3):361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wedel BJ, Vazquez G, McKay RR, St JBG, Putney JW Jr (2003) A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem 278(28):25758–25765

    Article  CAS  PubMed  Google Scholar 

  166. Dionisio N, Albarran L, Berna-Erro A, Hernandez-Cruz JM, Salido GM, Rosado JA (2011) Functional role of the calmodulin- and inositol 1,4,5-trisphosphate receptor-binding (CIRB) site of TRPC6 in human platelet activation. Cell Signal 23(11):1850–1856

    Article  CAS  PubMed  Google Scholar 

  167. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289(10):6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    Article  CAS  PubMed  Google Scholar 

  169. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  170. Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C, Achen VR, Patel HH, Ambudkar IS, Singh BB (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126(Pt 2):667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lopez E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC (2013) FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. Biochim Biophys Acta 1833(3):652–662

    Article  CAS  PubMed  Google Scholar 

  172. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Functional relevance of the de novo coupling between hTRPC1 and type II IP3 receptor in store-operated Ca2+ entry in human platelets. Cell Signal 20(4):737–747

    Article  CAS  PubMed  Google Scholar 

  173. Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biol 9(3):e1001025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ong EC, Nesin V, Long CL, Bai CX, Guz JL, Ivanov IP, Abramowitz J, Birnbaumer L, Humphrey MB, Tsiokas L (2013) A TRPC1 protein-dependent pathway regulates osteoclast formation and function. J Biol Chem 288(31):22219–22232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105(2):209–226

    Article  CAS  PubMed  Google Scholar 

  177. Zweifach A, Lewis RS (1995) Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem 270(24):14445–14451

    Article  CAS  PubMed  Google Scholar 

  178. Parekh AB (2017) Regulation of CRAC channels by Ca2+-dependent inactivation. Cell Calcium 63:20–23

    Article  CAS  PubMed  Google Scholar 

  179. Parekh AB (1998) Slow feedback inhibition of calcium release-activated calcium current by calcium entry. J Biol Chem 273(24):14925–14932

    Article  CAS  PubMed  Google Scholar 

  180. Fierro L, Parekh AB (1999) Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J Membr Biol 168(1):9–17

    Article  CAS  PubMed  Google Scholar 

  181. Liu Y, Zheng X, Mueller GA, Sobhany M, DeRose EF, Zhang Y, London RE, Birnbaumer L (2012) Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J Biol Chem 287(51):43030–43041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mullins FM, Yen M, Lewis RS (2016) Orai1 pore residues control CRAC channel inactivation independently of calmodulin. J Gen Physiol 147(2):137–152

    Article  PubMed  PubMed Central  Google Scholar 

  183. Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current I(CRAC). EMBO J 19(23):6401–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149(2):425–438

    Article  CAS  PubMed  Google Scholar 

  185. Albarran L, Regodon S, Salido GM, Lopez JJ, Rosado JA (2017) Role of STIM1 in the surface expression of SARAF. Channels (Austin) 11(1):84–88

    Article  Google Scholar 

  186. Albarran L, Lopez JJ, Ben Amor N, Martín-Cano FE, Berna-Erro A, Smani T, Salido GM, Rosado JA (2016) Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Scientific Reports 6:24452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Albarran L, Lopez JJ, Gomez LJ, Salido GM, Rosado JA (2016) SARAF modulates TRPC1, but not TRPC6, channel function in a STIM1-independent manner. Biochem J 473(20):3581–3595

    Article  CAS  PubMed  Google Scholar 

  188. Maleth J, Choi S, Muallem S, Ahuja M (2014) Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nat Commun 5:5843

    Article  PubMed  Google Scholar 

  189. Feng JM, Hu YK, Xie LH, Colwell CS, Shao XM, Sun XP, Chen B, Tang H, Campagnoni AT (2006) Golli protein negatively regulates store depletion-induced calcium influx in T cells. Immunity 24(6):717–727

    Article  CAS  PubMed  Google Scholar 

  190. Walsh CM, Doherty MK, Tepikin AV, Burgoyne RD (2010) Evidence for an interaction between Golli and STIM1 in store-operated calcium entry. Biochem J 430(3):453–460

    Article  CAS  PubMed  Google Scholar 

  191. Carreras-Sureda A, Cantero-Recasens G, Rubio-Moscardo F, Kiefer K, Peinelt C, Niemeyer BA, Valverde MA, Vicente R (2013) ORMDL3 modulates store-operated calcium entry and lymphocyte activation. Hum Mol Genet 22(3):519–530

    Article  CAS  PubMed  Google Scholar 

  192. Lopez JJ, Albarran L, Jardin I, Sanchez-Collado J, Redondo PC, Bermejo N, Bobe R, Smani T, Rosado JA (2018) Filamin A modulates store-operated Ca2+ entry by regulating STIM1 (Stromal Interaction Molecule 1)-Orai1 association in human platelets. Arterioscler Thromb Vasc Biol 38:386–397

    Article  CAS  PubMed  Google Scholar 

  193. Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12(5):436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X, Zhang SL, Zhong L, Huang Y, Dong MQ, Walker CL, Hogan PG, Wang Y, Zhou Y (2015) Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nat Cell Biol 17(10):1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Beck A, Fleig A, Penner R, Peinelt C (2014) Regulation of endogenous and heterologous Ca(2)(+) release-activated Ca(2)(+) currents by pH. Cell Calcium 56(3):235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. He X, Song S, Ayon RJ, Balisterieri A, Black SM, Makino A, Wier WG, Zang WJ, Yuan JX (2018) Hypoxia selectively upregulates cation channels and increases cytosolic [Ca2+] in pulmonary, but not coronary, arterial smooth muscle cells. Am J Physiol Cell Physiol 314(4):C504–C517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rosado JA, Redondo PC, Salido GM, Gomez-Arteta E, Sage SO, Pariente JA (2004) Hydrogen peroxide generation induces pp60src activation in human platelets: evidence for the involvement of this pathway in store-mediated calcium entry. J Biol Chem 279(3):1665–1675

    Article  CAS  PubMed  Google Scholar 

  198. Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190(3):391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW Jr (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11(12):1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sundivakkam PC, Natarajan V, Malik AB, Tiruppathi C (2013) Store-operated Ca2+ entry (SOCE) induced by protease-activated receptor-1 mediates STIM1 protein phosphorylation to inhibit SOCE in endothelial cells through AMP-activated protein kinase and p38beta mitogen-activated protein kinase. J Biol Chem 288(23):17030–17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kawasaki T, Ueyama T, Lange I, Feske S, Saito N (2010) Protein kinase C-induced phosphorylation of Orai1 regulates the intracellular Ca2+ level via the store-operated Ca2+ channel. J Biol Chem 285(33):25720–25730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by MINECO (Grant BFU2016-74932-C2-1-P/2-P) and Junta de Extremadura-FEDER (IB16046 and GR18061). IJ and JJL were supported by Juan de la Cierva Program (IJCI_2015-25665) and Junta de Extremadura-FEDER (IB16046), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Jardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez, J.J. et al. (2020). Molecular Basis and Regulation of Store-Operated Calcium Entry. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_17

Download citation

Publish with us

Policies and ethics