Advertisement

IntelliEppi: Intelligent Reaction Monitoring and Holistic Data Management System for the Molecular Biology Lab

  • Arthur Neuberger
  • Zeeshan AhmedEmail author
  • Thomas Dandekar
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)

Abstract

Daily alterations of routines and protocols create high, yet so far unmet demands for intelligent reaction monitoring, quality control and data management in molecular biology laboratories. To meet such needs, the “internet of things” is implemented here. We propose an approach which combines direct tracking of lab tubes, reactions and racks with a comprehensive data management system. Reagent tubes in this system are tagged with 2D data matrices or imprinted RFID-chips using a unique identification number. For each tube, individual content and all relevant information based on conducted experimental procedures are stored in an experimental data management system. This information is managed automatically but allow scientists to engage and interfere via user-friendly graphical interface. Tagged tubes are used in connection with a detectable RFID-tagged rack. We show that reaction protocols, HTS storage and complex reactions are easily planned and controlled.

Keywords

Bioinformatics Data management Molecular biology Reaction monitoring 

Notes

Acknowledgements

We thank BMBF for support (grant number 031L0129B).

References

  1. 1.
    Huang, G.Q., Zhang, Y.F., Jiang, P.Y.: RFID-based wireless manufacturing for walking-worker assembly islands with fixed-position layouts. Robot Comput.-Integr. Manuf. 23, 469–477 (2007)CrossRefGoogle Scholar
  2. 2.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)CrossRefGoogle Scholar
  3. 3.
    Spolaczyk, R: Apparatus for handling liquids and a process for operating the device (2004). https://www.google.com/patents/US6819437
  4. 4.
    Becher, H., Renz, M.: Pipetting robot for laboratory use (2013). https://www.google.com/patents/USD674110
  5. 5.
    Mann, K.H., Lang, A., Nowak, E., Sattler, S., Schels, H.D.: Verfahren zur Analyse von Probenflüssigkeiten (1995). https://encrypted.google.com/patents/EP0637750A2?cl=it
  6. 6.
    Davis, R., Geiger, B., Gutierrez, A., Heaser, J., Veeramani, D.: Tracking blood products in blood centres using radio frequency identification: a comprehensive assessment. Vox Sang. 97, 50–60 (2009)CrossRefGoogle Scholar
  7. 7.
    Hohberger, C., Davis, R., Briggs, L., Gutierrez, A., Veeramani, D.: Applying radio-frequency identification (RFID) technology in transfusion medicine. Biol.: J. Int. Assoc. Biol. Stand. 40, 209–213 (2012)CrossRefGoogle Scholar
  8. 8.
    Neuberger, A., Ahmed, Z., Dandekar, T.: A system for non-contact monitoring of reaction vessels with electronic bearing support, preparation of suitable vessels and monitoring technology (2014). https://www.google.com/patents/DE102014005549A1?cl=en
  9. 9.
    Mobley, A., Linder, S.K., Braeuer, R., Ellis, L.M., Zwelling, L.: A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. PLoS ONE 8, e63221 (2013)CrossRefGoogle Scholar
  10. 10.
    Linshiz, G., Stawski, N., Poust, S., Bi, C., Keasling, J.D., Hillson, N.J.: PaR-PaR laboratory automation platform. ACS Synth. Biol. 2, 216–222 (2013)CrossRefGoogle Scholar
  11. 11.
    Ananthanarayanan, V., Thies, W.: Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4, 13 (2010)CrossRefGoogle Scholar
  12. 12.
    Soldatova, L.N., Aubrey, W., King, R.D., Clare, A.: The EXACT description of biomedical protocols. Bioinformatics 24, i295–i303 (2008)CrossRefGoogle Scholar
  13. 13.
    Ellefson, L.P.: Label stripping apparatus for label printers (1977). http://www.google.tl/patents/US4036132
  14. 14.
    Excoffier, J.L., Ehrlich, L.E.: Sample identification utilizing RFID tags (2007). http://www.google.tl/patents/US20060213964
  15. 15.
    Trueeb, H., Birrer, A., Brauner, T.: Method and system to localise and identify test tubes (2010). https://www.google.com/patents/US20100025464
  16. 16.
    Trueeb, H., Birrer, A., Brauner, T.: Laboratory device for processing samples and methods using the same (2012). http://www.google.tl/patents/US8197750
  17. 17.
    Pedrazzini, G.: System for automatically identifying, conveying and addressing biological material specimens (2010). https://www.google.com/patents/US20100300831
  18. 18.
    Ullmann, A., Böhm, M.: Rfid transponder (2010). https://www.google.com/patents/US20100243742
  19. 19.
    Barrett, T.J., Check, C.J., Mauch, C.A., Lauria, M., Scharpf, P.G.: RFID label printing system (2003). https://www.google.ms/patents/US6593853
  20. 20.
    Hammond, P.A., Ali, D., Cumming, D.R.: A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans. Biomed. Eng. 52, 687–694 (2005)CrossRefGoogle Scholar
  21. 21.
    Johannessen, E.A., Wang, L., Cui, L., Tang, T.B., Ahmadian, M., Astaras, A., Reid, S.W., Yam, P.S., Murray, A.F., Flynn, B.W., Beaumont, S.P., Cumming, D.R., Cooper, J.M.: Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Trans. Bio-Med. Eng. 51, 525–535 (2004)CrossRefGoogle Scholar
  22. 22.
    King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)CrossRefGoogle Scholar
  23. 23.
    Soldatova, L.N., Clare, A., Sparkes, A., King, R.D.: An ontology for a robot scientist. Bioinformatics 22, e464–e471 (2006)CrossRefGoogle Scholar
  24. 24.
    Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V., Cronin, L.: Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12, 3267–3271 (2012)CrossRefGoogle Scholar
  25. 25.
    Wu, G., Bashir-Bello, N., Freeland, S.J.: The synthetic gene designer: a flexible web platform to explore sequence manipulation for heterologous expression. Protein Expr. Purif. 47, 441–445 (2006)CrossRefGoogle Scholar
  26. 26.
    Vehniaeinen, A., Gustafsson, H., Koskinen, T.: Method and a system for producing nanocellulose, and nanocellulose (2011). https://www.google.ch/patents/US20130303749
  27. 27.
    Das, R., Kiley, P.J., Segal, M., Norville, J., Yu, A.A., Wang, L., Trammell, S.A., Reddick, L.E., Kumar, R., Stellacci, F., Lebedev, N., Schnur, J., Bruce, B.D., Zhang, S., Baldo, M.: Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett. 4, 1079–1083 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arthur Neuberger
    • 1
  • Zeeshan Ahmed
    • 2
    Email author
  • Thomas Dandekar
    • 3
  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUK
  2. 2.Department of Genetics and Genome Science, School of MedicineUniversity of Connecticut Health CenterFarmingtonUSA
  3. 3.Department of BioinformaticsBiocenter, University of WuerzburgWürzburgGermany

Personalised recommendations