Skip to main content

ScaffoldNet: Detecting and Classifying Biomedical Polymer-Based Scaffolds via a Convolutional Neural Network

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Included in the following conference series:


We developed a Convolutional Neural Network model to identify and classify Airbrushed (alternatively known as Blow-spun), Electrospun and Steel Wire scaffolds. Our model ScaffoldNet is a 6-layer Convolutional Neural Network trained and tested on 3043 images of Airbrushed, Electrospun and Steel Wire scaffolds. The model takes in as input an imaged scaffold and then outputs the scaffold type (Airbrushed, Electrospun or Steel Wire) as predicted probabilities for the 3 classes. Our model scored a 99.44% Accuracy, demonstrating potential for adaptation to investigating and solving complex machine learning problems aimed at abstract spatial contexts, or in screening complex, biological, fibrous structures seen in cortical bone and fibrous shells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Systems 25 (2012)

    Google Scholar 

  2. Chen, L., Papandreou, G. Kokkinos, I., Murphy, K., Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs (2014)

    Google Scholar 

  3. Redmon, J., Divvala, S., Girshick, R., Farhadi A.: You only look once: unified, real-time object detection (2015)

    Google Scholar 

  4. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2015)

    Google Scholar 

  5. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images (2016)

    Google Scholar 

  6. Van Grinsven, M., Van Ginneken, B., Hoyng, C., Theelen, T., Sánchez, C.: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images (2016)

    Google Scholar 

  7. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen., D.: Suggestive annotation: a deep active learning framework for biomedical image segmentation (2017)

    Google Scholar 

  8. Esteva, A., Kuprel, B., Novoa, R., Ko, J., Swetter, S., Blau, H., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks (2017)

    Google Scholar 

  9. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4): 193–202. (1980)

    Article  Google Scholar 

  10. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. Man, and Cybern. SMC-13(3), 826–834 (1983)

    Article  Google Scholar 

  11. Fukushima, K.: A hierarchical neural network model for selective attention. In: Eckmiller, R., Von der Malsburg, C. (eds,) Neural Computers, pp. 81–90. Springer-Verlag (1987)

    Google Scholar 

  12. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    Article  Google Scholar 

  13. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L. Backpropagation applied to handwritten zip code recognition. Neural Comput. (1989)

    Google Scholar 

  14. Hotaling, N., Bharti, K., Kriel, H., Simon, C. Diameter, J.: A validated opensource nanofiber diameter measurement tool. Biomaterials 61(August), 327–338 (2015)

    Article  Google Scholar 

  15. Lin, M., Chen, Q., Yan, S.: Network in network (2013)

    Google Scholar 

  16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting (2014)

    Google Scholar 

  17. Hahnloser, R., Sarpeshkar, R., Mahowald, M., Douglas, R., Seung, H.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947–951 (2000)

    Article  Google Scholar 

  18. Ramachandran, P., Barret, Z., Quoc, L.: Searching for activation functions (2017)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  20. Hotaling, N., Jeon, J. Wade, M., Luong, D. Palmer, X-L., Bharti, K. Simon Jr, C.: Training to improve precision and accuracy in the measurement of fiber morphology. PLOS One 11, e0167664 (2016)

    Article  Google Scholar 

  21. Chen, D., Sarkar, S., Candia, J., Florczyk, S., Bodhak, S., Driscoll, M., Simon, C., Dunkers, J., Losert, W.: Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues. Biomaterials 104, 104–118 (2016)

    Article  Google Scholar 

  22. Patrick, S., Mollica,P., Bruno, R.: Tissue specific microenvironments: a key tool for tissue engineering and regenerative medicine. J. Biol. Eng. 11(1) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Darlington Ahiale Akogo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akogo, D.A., Palmer, XL. (2020). ScaffoldNet: Detecting and Classifying Biomedical Polymer-Based Scaffolds via a Convolutional Neural Network. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham.

Download citation

Publish with us

Policies and ethics