Abstract
Meta-omic techniques have progressed rapidly in the past decade and are frequently used in microbial ecology to study microorganisms in their natural ecosystems independent from culture restrictions. Metaproteomics, in combination with metagenomics, enables quantitative assessment of expressed proteins and pathways from individual members of the consortium. Together, metaproteomics and metagenomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples. Here, we outline key aspects of sample preparation, database generation, and other methodological considerations that are required for successful quantitative metaproteomic analyses and we describe case studies on the integration with metagenomics for enhanced functional output.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417. https://doi.org/10.1002/pmic.201500183
Xiong W, Abraham PE, Li Z, Pan C, Hettich RL (2015) Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 15(20):3424–3438. https://doi.org/10.1002/pmic.201400571
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43. https://doi.org/10.1038/nature02340
Aliaga Goltsman DS, Comolli LR, Thomas BC, Banfield JF (2015) Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J 9(4):1014–1023. https://doi.org/10.1038/ismej.2014.200
Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920. https://doi.org/10.1111/j.1462-2920.2004.00687.x
Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78. https://doi.org/10.1002/mas.20108
Hagen LH, Frank JA, Zamanzadeh M, Eijsink VG, Pope PB, Horn SJ, Arntzen MO (2017) Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester. Appl Environ Microbiol 83(2). https://doi.org/10.1128/AEM.01955-16
Lee PY, Chin S-F, Neoh H-M, Jamal R (2017) Metaproteomic analysis of human gut microbiota: where are we heading? J Biomed Sci 24:36. https://doi.org/10.1186/s12929-017-0342-z
Urich T, Lanzén A, Stokke R, Pedersen RB, Bayer C, Thorseth IH, Schleper C, Steen IH, Øvreas L (2014) Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ Microbiol 16:2699–2710. https://doi.org/10.1111/1462-2920.12283
Püttker S, Kohrs F, Benndorf D, Heyer R, Rapp E, Reichl U (2015) Metaproteomics of activated sludge from a wastewater treatment plant – a pilot study. Proteomics 15:3596–3601. https://doi.org/10.1002/pmic.201400559
Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–212. https://doi.org/10.1038/nature14238
Wang D-Z, Xie Z-X, Zhang S-F (2014) Marine metaproteomics: current status and future directions. J Proteomics 97:27–35. https://doi.org/10.1016/j.jprot.2013.08.024
Keiblinger KM, Fuchs S, Zechmeister-Boltenstern S, Riedel K (2016) Soil and leaf litter metaproteomics – a brief guideline from sampling to understanding. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/iw180
Zhang X, Li L, Mayne J, Ning Z, Stintzi A, Figeys D (2017) Assessing the impact of protein extraction methods for human gut metaproteomics. J Proteomics 180:120. https://doi.org/10.1016/j.jprot.2017.07.001
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475. https://doi.org/10.3389/fmicb.2015.00475
Wiśniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678. https://doi.org/10.1021/pr900748n
Zougman A, Selby PJ, Banks RE (2014) Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis. Proteomics 14:1006–1000. https://doi.org/10.1002/pmic.201300553
Hernandez-Valladares M, Aasebø E, Mjaavatten O, Vaudel M, Bruserud Ø, Berven F, Selheim F (2016) Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. Biol Proced Online 18:13. https://doi.org/10.1186/s12575-016-0043-0
Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8(12):5674–5678. https://doi.org/10.1021/pr900748n
Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L, Riedel K, Zechmeister-Boltenstern S (2012) Soil metaproteomics – comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24. https://doi.org/10.1016/j.soilbio.2012.05.014
Speda J, Johansson MA, Carlsson U, Karlsson M (2017) Assessment of sample preparation methods for metaproteomics of extracellular proteins. Anal Biochem 516:23–36. https://doi.org/10.1016/j.ab.2016.10.008
Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143
Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786. https://doi.org/10.1002/elps.200500722
Arenella M, D’Acqui LP, Pucci A, Giagnoni L, Nannipieri P, Renella G (2014) Contact with soil-borne humic substances interfere with the prion identification by mass spectrometry. Biol Fertil Soils 50:1009–1013. https://doi.org/10.1007/s00374-014-0922-y
Arenella M, Giagnoni L, Masciandaro G, Ceccanti B, Nannipieri P, Renella G (2014) Interactions between proteins and humic substances affect protein identification by mass spectrometry. Biol Fertil Soils 50:447–454. https://doi.org/10.1007/s00374-013-0860-0
Piccolo A, Spiteller M (2003) Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal Bioanal Chem 377:1047–1059. https://doi.org/10.1007/s00216-003-2186-5
Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234. https://doi.org/10.1038/ismej.2007.39
Giagnoni L, Magherini F, Landi L, Taghavi S, Modesti A, Bini L, Nannipieri P, Van der lelie D, Renella G (2011) Extraction of microbial proteome from soil: potential and limitations assessed through a model study. Eur J Soil Sci 62:74–81. https://doi.org/10.1111/j.1365-2389.2010.01322.x
Qian C, Hettich RL (2017) Optimized extraction method to remove humic acid interferences from soil samples prior to microbial proteome measurements. J Proteome Res 16:2537–2546. https://doi.org/10.1021/acs.jproteome.7b00103
Dowell JA, Frost DC, Zhang J, Li L (2008) Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80:6715–6723. https://doi.org/10.1021/ac8007994
Lee C-L, Hsiao H-H, Lin C-W, Wu S-P, Huang S-Y, Wu C-Y, Wang AH-J, Khoo K-H (2003) Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics 3:2472–2486. https://doi.org/10.1002/pmic.200300586
Weston LA, Bauer KM, Hummon AB (2013) Comparison of bottom-up proteomic approaches for LC-MS analysis of complex proteomes. Anal Methods 5:4615. https://doi.org/10.1039/C3AY40853A
Heyer R, Kohrs F, Reichl U, Benndorf D (2015) Metaproteomics of complex microbial communities in biogas plants. J Microbial Biotechnol 8:749–763. https://doi.org/10.1111/1751-7915.12276
Yang F, Shen Y, Camp DG 2nd, Smith RD (2012) High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 9(2):129–134. https://doi.org/10.1586/epr.12.15
Zhang X, Fang A, Riley CP, Wang M, Regnier FE, Buck C (2010) Multi-dimensional liquid chromatography in proteomics – a review. Anal Chim Acta 664(2):101–113. https://doi.org/10.1016/j.aca.2010.02.001
Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U (2014) Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 29:59–67. https://doi.org/10.1016/j.anaerobe.2013.11.009
Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev RA (2013) Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol Cell Proteomics 12(11):3330–3338. https://doi.org/10.1074/mcp.O113.028787
Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Muller M, Lisacek F (2015) Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15(5–6):964–980. https://doi.org/10.1002/pmic.201400323
Tanca A, Palomba A, Fraumene C, Pagnozzi D, Manghina V, Deligios M, Muth T, Rapp E, Martens L, Addis MF (2016) The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome 4(1):51
Muth T, Renard BY, Martens L (2016) Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Rev Proteomics 13(8):757–769. https://doi.org/10.1080/14789450.2016.1209418
Bragg L, Tyson GW (2014) Metagenomics using next-generation sequencing. In: Paulsen IT, Holmes AJ (eds) Environmental microbiology: methods and protocols. Humana Press, Totowa, pp 183–201. https://doi.org/10.1007/978-1-62703-712-9_15
Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, Wampach L, Schneider JG, Hogan A, de Beaufort C, Wilmes P (2016) Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2:16180. https://doi.org/10.1038/nmicrobiol.2016.180
Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428. https://doi.org/10.1093/bioinformatics/bts174
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676. https://doi.org/10.1093/bioinformatics/btv033
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021
Sangwan N, Xia F, Gilbert JA (2016) Recovering complete and draft population genomes from metagenome datasets. Microbiome 4:8. https://doi.org/10.1186/s40168-016-0154-5
Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VG, McHardy AC, Nederbragt AJ, Pope PB (2016) Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci Rep 6:25373. https://doi.org/10.1038/srep25373
Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165. https://doi.org/10.7717/peerj.1165
Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2(1):26. https://doi.org/10.1186/2049-2618-2-26
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11(11):1144–1146. https://doi.org/10.1038/nmeth.3103
Gregor I, Dröge J, Schirmer M, Quince C, McHardy AC (2016) PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ 4:e1603. https://doi.org/10.7717/peerj.1603
Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386. https://doi.org/10.1101/gr.5969107
Dröge J, Gregor I, McHardy AC (2015) Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. Bioinformatics 31(6):817–824. https://doi.org/10.1093/bioinformatics/btu745
McHardy AC, Rigoutsos I (2007) What’s in the mix: phylogenetic classification of metagenome sequence samples. Curr Opin Microbiol 10(5):499–503. https://doi.org/10.1016/j.mib.2007.08.004
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droege J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Sparholt Jorgensen T, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Hestbjerg Hansen L, Sorensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Kang DD, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton M, Lingner T, Lin H-H, Liao Y-C, Gueiros Z, Silva G, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk H-P, Goeker M, Kyrpides N, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC (2017) Critical Assessment of Metagenome Interpretation − a benchmark of computational metagenomics software. bioRxiv. https://doi.org/10.1101/099127
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319. https://doi.org/10.7717/peerj.1319
Zhu Z, Niu B, Chen J, Wu S, Sun S, Li W (2013) MGAviewer: a desktop visualization tool for analysis of metagenomics alignment data. Bioinformatics 29(1):122–123. https://doi.org/10.1093/bioinformatics/bts567
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114
Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:e1900v1901. https://doi.org/10.7287/peerj.preprints.1900v1
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glockner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, The Genome Standards C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35(8):725–731. https://doi.org/10.1038/nbt.3893
Trimble WL, Keegan KP, D’Souza M, Wilke A, Wilkening J, Gilbert J, Meyer F (2012) Short-read reading-frame predictors are not created equal: sequence error causes loss of signal. BMC Bioinformatics 13:183. https://doi.org/10.1186/1471-2105-13-183
Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):e132–e132. https://doi.org/10.1093/nar/gkq275
Frank JA, Arntzen MØ, Sun L, Hagen LH, McHardy AC, Horn SJ, Eijsink VGH, Schnürer A, Pope PB (2016) Novel syntrophic populations dominate an ammonia-tolerant methanogenic microbiome. mSystems 1(5). https://doi.org/10.1128/mSystems.00092-16
Tang H, Li S, Ye Y (2016) A graph-centric approach for metagenome-guided peptide and protein identification in metaproteomics. PLoS Comput Biol 12(12):e1005224. https://doi.org/10.1371/journal.pcbi.1005224
Weimann A, Mooren K, Frank J, Pope PB, Bremges A, McHardy AC (2016) From genomes to phenotypes: traitar, the microbial trait analyzer. mSystems 1(6). https://doi.org/10.1128/mSystems.00101-16
Muth T, Benndorf D, Reichl U, Rapp E, Martens L (2013) Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. Mol Biosyst 9(4):578–585. https://doi.org/10.1039/c2mb25415h
Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10):1419–1440. https://doi.org/10.1074/mcp.R500012-MCP200
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j
Craig R, Beavis RC (2003) A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom 17(20):2310–2316. https://doi.org/10.1002/rcm.1198
Eng JK, Searle BC, Clauser KR, Tabb DL (2011) A face in the crowd: recognizing peptides through database search. Mol Cell Proteomics 10(11):R111.009522. doi:https://doi.org/10.1074/mcp.R111.009522
Vaudel M, Burkhart JM, Sickmann A, Martens L, Zahedi RP (2011) Peptide identification quality control. Proteomics 11(10):2105–2114. https://doi.org/10.1002/pmic.201000704
Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214. https://doi.org/10.1038/nmeth1019
Jagtap P, Goslinga J, Kooren JA, McGowan T, Wroblewski MS, Seymour SL, Griffin TJ (2013) A two-step database search method improves sensitivity in peptide sequence matches for metaproteomics and proteogenomics studies. Proteomics 13(8):1352–1357. https://doi.org/10.1002/pmic.201200352
Chatterjee S, Stupp GS, Park SK, Ducom JC, Yates JR 3rd, Su AI, Wolan DW (2016) A comprehensive and scalable database search system for metaproteomics. BMC Genomics 17(1):642. https://doi.org/10.1186/s12864-016-2855-3
Wang Y, Ahn TH, Li Z, Pan C (2013) Sipros/ProRata: a versatile informatics system for quantitative community proteomics. Bioinformatics 29(16):2064–2065. https://doi.org/10.1093/bioinformatics/btt329
Gonnelli G, Stock M, Verwaeren J, Maddelein D, De Baets B, Martens L, Degroeve S (2015) A decoy-free approach to the identification of peptides. J Proteome Res 14(4):1792–1798. https://doi.org/10.1021/pr501164r
Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73(9):1917–1926
Pevtsov S, Fedulova I, Mirzaei H, Buck C, Zhang X (2006) Performance evaluation of existing de novo sequencing algorithms. J Proteome Res 5(11):3018–3028. https://doi.org/10.1021/pr060222h
Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77(4):964–973
Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342. https://doi.org/10.1002/rcm.1196
Allmer J (2011) Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Rev Proteomics 8(5):645–657. https://doi.org/10.1586/epr.11.54
Muth T, Kolmeder CA, Salojarvi J, Keskitalo S, Varjosalo M, Verdam FJ, Rensen SS, Reichl U, de Vos WM, Rapp E, Martens L (2015) Navigating through metaproteomics data: a logbook of database searching. Proteomics 15(20):3439–3453. https://doi.org/10.1002/pmic.201400560
Craig R, Cortens JC, Fenyo D, Beavis RC (2006) Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res 5(8):1843–1849. https://doi.org/10.1021/pr0602085
Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7(5):655–667. https://doi.org/10.1002/pmic.200600625
Frewen B, MacCoss MJ (2007) Using BiblioSpec for creating and searching tandem MS peptide libraries. Curr Protoc Bioinformatics Chapter 13:Unit 13 17. doi:https://doi.org/10.1002/0471250953.bi1307s20
Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201. https://doi.org/10.1021/ac0498563
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272. https://doi.org/10.1074/mcp.M500061-MCP200
Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103(50):18928–18933. https://doi.org/10.1073/pnas.0606379103
Nahnsen S, Bielow C, Reinert K, Kohlbacher O (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12(3):549–556. https://doi.org/10.1074/mcp.R112.025163
Muth T, Behne A, Heyer R, Kohrs F, Benndorf D, Hoffmann M, Lehteva M, Reichl U, Martens L, Rapp E (2015) The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. J Proteome Res 14(3):1557–1565. https://doi.org/10.1021/pr501246w
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511
Jagtap PD, Blakely A, Murray K, Stewart S, Kooren J, Johnson JE, Rhodus NL, Rudney J, Griffin TJ (2015) Metaproteomic analysis using the Galaxy framework. Proteomics 15(20):3553–3565. https://doi.org/10.1002/pmic.201500074
Argentini A, Goeminne LJ, Verheggen K, Hulstaert N, Staes A, Clement L, Martens L (2016) moFF: a robust and automated approach to extract peptide ion intensities. Nat Methods 13(12):964–966. https://doi.org/10.1038/nmeth.4075
Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12(6):e1004957. https://doi.org/10.1371/journal.pcbi.1004957
Mesuere B, Devreese B, Debyser G, Aerts M, Vandamme P, Dawyndt P (2012) Unipept: tryptic peptide-based biodiversity analysis of metaproteome samples. J Proteome Res 11(12):5773–5780. https://doi.org/10.1021/pr300576s
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32(Database issue):D115–D119. https://doi.org/10.1093/nar/gkh131
Schneider T, Schmid E, de Castro JV Jr, Cardinale M, Eberl L, Grube M, Berg G, Riedel K (2011) Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11(13):2752–2756. https://doi.org/10.1002/pmic.201000679
Penzlin A, Lindner MS, Doellinger J, Dabrowski PW, Nitsche A, Renard BY (2014) Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics. Bioinformatics 30(12):i149–i156. https://doi.org/10.1093/bioinformatics/btu267
Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24. https://doi.org/10.1016/j.jbiotec.2017.06.1201
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901
Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29(14):1830–1831. https://doi.org/10.1093/bioinformatics/btt285
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Web Server issue):W29–W37. https://doi.org/10.1093/nar/gkr367
Prakash T, Taylor TD (2012) Functional assignment of metagenomic data: challenges and applications. Brief Bioinform 13(6):711–727. https://doi.org/10.1093/bib/bbs033
Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96(6):2896–2901
Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–637
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344
Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31(1):371–373
Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28(1):304–305
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30
Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32(Database issue):D438–D442. https://doi.org/10.1093/nar/gkh100
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3
Reimand J, Kull M, Peterson H, Hansen J, Vilo J (2007) g:Profiler – a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 35(Web Server issue):W193–W200. https://doi.org/10.1093/nar/gkm226
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SC, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45(D1):D190–D199. https://doi.org/10.1093/nar/gkw1107
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–W120. https://doi.org/10.1093/nar/gki442
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 40(Database issue):D115–D122. https://doi.org/10.1093/nar/gkr1044
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731. https://doi.org/10.1016/j.jmb.2015.11.006
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495. https://doi.org/10.1093/nar/gkt1178
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(Web Server issue):W445–W451. https://doi.org/10.1093/nar/gks479
Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20(12):1574–1584. https://doi.org/10.1093/glycob/cwq106
Rawlings ND, Barrett AJ, Finn R (2016) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44(D1):D343–D350. https://doi.org/10.1093/nar/gkv1118
Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803(4):520–525. https://doi.org/10.1016/j.bbamcr.2010.01.022
Mayers MD, Moon C, Stupp GS, Su AI, Wolan DW (2017) Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease. J Proteome Res 16(2):1014–1026. https://doi.org/10.1021/acs.jproteome.6b00938
Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M, Richnow HH, Vogt C (2010) Protein-based stable isotope probing. Nat Protoc 5(12):1957–1966. https://doi.org/10.1038/nprot.2010.166
Campanaro S, Treu L, Kougias PG, Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9(1):1
Zhou Y, Pope PB, Li S, Wen B, Tan F, Cheng S, Chen J, Yang J, Liu F, Lei X (2014) Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Sci Rep 4:5288. https://doi.org/10.1038/srep05288
Hartmann H, Ahring BK (2005) Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res 39(8):1543–1552. https://doi.org/10.1016/j.watres.2005.02.001
Westerholm M, Moestedt J, Schnürer A (2016) Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl Energy 179:124–135
Gallert C, Winter J (1997) Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl Microbiol Biotechnol 48(3):405–410
McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. In: Wiegel J, Maier RJ, Adams MWW (eds) Incredible anaerobes: from physiology to genomics to fuels, Annals of the New York Academy of Sciences, vol 1125. Blackwell Publishing, Oxford, pp 58–72. https://doi.org/10.1196/annals.1419.005
Westerholm M, Roos S, Schnürer A (2011) Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst Appl Microbiol 34(4):260–266
Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46(4):1145–1152
Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50(4):1601–1609
Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 5:207. https://doi.org/10.3389/fmicb.2014.00207
Karlsen C, Ottem KF, Brevik OJ, Davey M, Sorum H, Winther-Larsen HC (2017) The environmental and host-associated bacterial microbiota of Arctic seawater-farmed Atlantic salmon with ulcerative disorders. J Fish Dis 40:1645. https://doi.org/10.1111/jfd.12632
Ángeles Esteban M (2012) An overview of the immunological defenses in fish skin. ISRN Immunol 2012:29. https://doi.org/10.5402/2012/853470
Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4(5):447–457
Roberts SD, Powell MD (2005) The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. J Comp Physiol B 175(1):1–11
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol 1E. 5.1–1E. 5.20
Cordero H, Morcillo P, Cuesta A, Brinchmann MF, Esteban MA (2016) Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J Proteomics 132:41–50. https://doi.org/10.1016/j.jprot.2015.11.017
Jurado J, Fuentes-Almagro CA, Guardiola FA, Cuesta A, Esteban MA, Prieto-Alamo MJ (2015) Proteomic profile of the skin mucus of farmed gilthead seabream (Sparus aurata). J Proteomics 120:21–34. https://doi.org/10.1016/j.jprot.2015.02.019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kunath, B.J. et al. (2019). Metaproteomics: Sample Preparation and Methodological Considerations. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-12298-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12297-3
Online ISBN: 978-3-030-12298-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
