Skip to main content

Proteomics: Tools of the Trade

  • Chapter
  • First Online:
Emerging Sample Treatments in Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1073))

Abstract

The proteome represents the total set of proteins produced by an organism or a system at a particular time or state, with proteomics being the study of the proteome. The proteome is a dynamic system wherein proteins are interconnected and serve to facilitate cellular processes in a concurrent and coordinated manner. Over the years, various biochemical and biophysical methods have been developed to elucidate the identities, structures and functions of proteins in order to understand their roles in complex biological systems. The success of proteomic approaches hinges on efficient protein extraction and sample preparation; however, these preliminary steps are often considered a bottleneck in proteomic workflows. Every biological sample is unique and complex, and sample processing needs to be tailored to the nature of the protein sample due to its vulnerability towards post-collection degradation and the complexity of its non-protein constituents. Sample pretreatment steps often employ buffers, solvents, salts and detergents that are not always compatible with the downstream analytical tools. This chapter will provide an overview of sample pretreatment techniques commonly used in conjunction with proteomics tools and discuss protein analysis methods. Such methods include the use of antibody-based techniques, separation sciences (e.g. chromatography, SDS-PAGE), detection methods (e.g. mass spectrometry) and structural techniques (e.g. NMR and X-ray crystallography).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347

    Article  CAS  PubMed  Google Scholar 

  2. Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16:269

    Article  CAS  PubMed  Google Scholar 

  3. Frueh DP, Goodrich AC, Mishra SH, Nichols SR (2013) NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol 23:734–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doll S, Dreßen M, Geyer PE, Itzhak DN, Braun C, Doppler SA et al (2017) Region and cell-type resolved quantitative proteomic map of the human heart. Nat Commun 8:1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Selevsek N, Chang C-Y, Gillet LC, Navarro P, Bernhardt OM, Reiter L et al (2015) Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-MS. Mol Cell Proteomics 14:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walther TC, Mann M (2010) Mass spectrometry–based proteomics in cell biology. J Cell Biol 190:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thein M, Sauer G, Paramasivam N, Grin I, Linke D (2010) Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147

    Article  CAS  PubMed  Google Scholar 

  8. Abbott N (1988) Liquid-liquid extraction for protein separations. Chem Eng Prog 84:37

    Google Scholar 

  9. Jabbour R, Snyder A (2014) Mass spectrometry-based proteomics techniques for biological identification. In: Schaudies R (ed) Biological identification. Sawston, UK: Woodhead Publishing; p. 370–430

    Chapter  Google Scholar 

  10. Tan SC, Yiap BC (2009) DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 2009

    Google Scholar 

  11. Baker MS, Ahn SB, Mohamedali A, Islam MT, Cantor D, Verhaert PD et al (2017) Accelerating the search for the missing proteins in the human proteome. Nat Commun 8:14271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115

    Article  CAS  PubMed  Google Scholar 

  13. Chen YY, Lin SY, Yeh YY, Hsiao HH, Wu CY, Chen ST et al (2005) A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis 26:2117–2127

    Article  CAS  PubMed  Google Scholar 

  14. Liu G, Zhao Y, Angeles A, Hamuro LL, Arnold ME, Shen JX (2014) A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins. Anal Chem 86:8336–8343

    Article  CAS  PubMed  Google Scholar 

  15. Echan LA, Tang HY, Ali-Khan N, Lee K, Speicher DW (2005) Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 5:3292–3303

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Gao P, Xing Z, Jin S, Chen Z, Liu L et al (2013) Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense. Mol Cell Proteomics 12:3431–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xi J, Wang X, Li S, Zhou X, Yue L, Fan J et al (2006) Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry 67:2341–2348

    Article  CAS  PubMed  Google Scholar 

  18. Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY et al (2013) Depletion of abundant plant R u B is CO protein using the protamine sulfate precipitation method. Proteomics 13:2176–2179

    Article  CAS  PubMed  Google Scholar 

  19. Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA (2008) Cross species applicability of abundant protein depletion columns for ribulose-1, 5-bisphosphate carboxylase/oxygenase. J Chromatogr B 861:29–39

    Article  CAS  Google Scholar 

  20. Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769

    Article  CAS  PubMed  Google Scholar 

  21. Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5:3304–3313

    Article  CAS  PubMed  Google Scholar 

  22. Yocum AK, Yu K, Oe T, Blair IA (2005) Effect of immunoaffinity depletion of human serum during proteomic investigations. J Proteome Res 4:1722–1731

    Article  CAS  PubMed  Google Scholar 

  23. Moritz RL, Ji H, Schütz F, Connolly LM, Kapp EA, Speed TP et al (2004) A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal Chem 76:4811–4824

    Article  CAS  PubMed  Google Scholar 

  24. Schubert OT, Röst HL, Collins BC, Rosenberger G, Aebersold R (2017) Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc 12:1289

    Article  CAS  PubMed  Google Scholar 

  25. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Fractionation of cells. Garland Science, New York

    Google Scholar 

  26. Smaczniak C, Li N, Boeren S, America T, Van Dongen W, Goerdayal SS et al (2012) Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat Protoc 7:2144

    Article  CAS  PubMed  Google Scholar 

  27. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379

    Article  CAS  PubMed  Google Scholar 

  28. Righetti PG, Castagna A, Antonioli P, Boschetti E (2005) Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis 26:297–319

    Article  CAS  PubMed  Google Scholar 

  29. Azimifar SB, Nagaraj N, Cox J, Mann M (2014) Cell-type-resolved quantitative proteomics of murine liver. Cell Metab 20:1076–1087

    Article  CAS  PubMed  Google Scholar 

  30. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N et al (2015) Cell type–and brain region–resolved mouse brain proteome. Nat Neurosci 18:1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hwang L, Ayaz-Guner S, Gregorich ZR, Cai W, Valeja SG, Jin S et al (2015) Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J Am Chem Soc 137:2432–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aryal UK, Ross AR, Krochko JE (2015) Enrichment and analysis of intact phosphoproteins in Arabidopsis seedlings. PLoS One 10:e0130763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  34. Thulasiraman V, Lin S, Gheorghiu L, Lathrop J, Lomas L, Hammond D et al (2005) Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis 26:3561–3571

    Article  CAS  PubMed  Google Scholar 

  35. Righetti PG, Boschetti E (2008) The ProteoMiner and the FortyNiners: searching for gold nuggets in the proteomic arena. Mass Spectrom Rev 27:596–608

    Article  CAS  PubMed  Google Scholar 

  36. Bandhakavi S, Van Riper SK, Tawfik PN, Stone MD, Haddad T, Rhodus NL et al (2011) Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva. J Proteome Res 10:1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hopper JT, Yu YT-C, Li D, Raymond A, Bostock M, Liko I et al (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10:1206

    Article  CAS  PubMed  Google Scholar 

  38. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin Y-p et al (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149

    Article  CAS  PubMed  Google Scholar 

  39. Tubaon RM, Haddad PR, Quirino JP (2017) Sample clean-up strategies for ESI mass spectrometry applications in bottom-up proteomics: trends from 2012 to 2016. Proteomics 17:1700011

    Article  CAS  Google Scholar 

  40. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896

    Article  CAS  PubMed  Google Scholar 

  41. Bladergroen MR, van der Burgt YE (2015) Solid-phase extraction strategies to surmount body fluid sample complexity in high-throughput mass spectrometry-based proteomics. J Anal Methods Chem 2015:250131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ghosh R (2002) Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A 952:13–27

    Article  CAS  PubMed  Google Scholar 

  43. Yu Y, Smith M, Pieper R (2014) A spinnable and automatable StageTip for high throughput peptide desalting and proteomics. Protoc Exchange. https://doi.org/10.1038/protex.2014.033

  44. Wu X, Xiong E, Wang W, Scali M, Cresti M (2014) Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 9:362–374

    Article  CAS  PubMed  Google Scholar 

  45. Cummins PM, Rochfort KD, O’Connor BF (2017) Ion-exchange chromatography: basic principles and application. Methods Mol Biol 1485:209–223

    Article  CAS  PubMed  Google Scholar 

  46. Gingras A-C, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645

    Article  CAS  PubMed  Google Scholar 

  47. Gibson F, Anderson L, Babnigg G, Baker M, Berth M, Binz P-A et al (2008) Guidelines for reporting the use of gel electrophoresis in proteomics. Nat Biotechnol 26:863

    Article  CAS  PubMed  Google Scholar 

  48. Steinberg TH (2009) Protein gel staining methods: an introduction and overview. In: Burgess MPD RR (ed) Methods in enzymology, vol 463. Elsevier, pp 541–563

    Google Scholar 

  49. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C et al (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and arnino acid analysis. Nat Biotechnol 14:61

    Article  CAS  Google Scholar 

  50. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152

    Article  CAS  PubMed  Google Scholar 

  51. De Matos LL, Trufelli DC, De Matos MGL, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS et al (2013) The one hour yeast proteome. Mol Cell Proteomics 13:339–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR et al (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moradian A, Kalli A, Sweredoski MJ, Hess S (2014) The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics 14:489–497

    Article  CAS  PubMed  Google Scholar 

  56. Padula MP, Berry IJ, Raymond B, Santos J, Djordjevic SP (2017) A comprehensive guide for performing sample preparation and top-down protein analysis. Proteomes 5:11

    Article  PubMed Central  CAS  Google Scholar 

  57. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cui W, Rohrs HW, Gross ML (2011) Top-down mass spectrometry: recent developments, applications and perspectives. Analyst 136:3854–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng F, Cargile BJ, Patrie SM, Johnson JR, McLoughlin SM, Kelleher NL (2002) Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal Chem 74:2923–2929

    Article  CAS  PubMed  Google Scholar 

  60. Susnea I, Bernevic B, Wicke M, Ma L, Liu S, Schellander K et al (2012) Application of MALDI-TOF-mass spectrometry to proteome analysis using stain-free gel electrophoresis. In: Cai ZLS (ed) Applications of MALDI-TOF spectroscopy. Topics in current chemistry, vol 331. Springer, Berlin, Heidelberg, pp 37–54

    Chapter  Google Scholar 

  61. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833

    Article  CAS  PubMed  Google Scholar 

  62. Li H, Nguyen HH, Loo RRO, Campuzano ID, Loo JA (2018) An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat Chem 10:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24:168–200

    Article  CAS  PubMed  Google Scholar 

  64. De Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251

    Article  PubMed  CAS  Google Scholar 

  65. Giansanti P, Tsiatsiani L, Low TY, Heck AJ (2016) Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat Protoc 11:993

    Article  CAS  PubMed  Google Scholar 

  66. Tsiatsiani L, Heck AJ (2015) Proteomics beyond trypsin. FEBS J 282:2612–2626

    Article  CAS  PubMed  Google Scholar 

  67. Huesgen PF, Lange PF, Rogers LD, Solis N, Eckhard U, Kleifeld O et al (2014) LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat Methods 12:55–58

    Article  PubMed  CAS  Google Scholar 

  68. Colgrave ML, Byrne K, Howitt CA (2017) Food for thought: selecting the right enzyme for the digestion of gluten. Food Chem 234:389–397

    Article  CAS  PubMed  Google Scholar 

  69. Nagaraj N, Lu A, Mann M, Wiśniewski JR (2008) Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC-MS runs. J Proteome Res 7:5028–5032

    Article  CAS  PubMed  Google Scholar 

  70. Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359

    Article  PubMed  CAS  Google Scholar 

  71. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8:639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cañas B, Piñeiro C, Calvo E, López-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258

    Article  PubMed  CAS  Google Scholar 

  73. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111. 016717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gillet LC, Leitner A, Aebersold R (2016) Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem 9:449–472

    Article  Google Scholar 

  75. Hager JW (2002) A new linear ion trap mass spectrometer. Rapid Commun Mass Spectrom 16:512–526

    Article  CAS  Google Scholar 

  76. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  CAS  PubMed  Google Scholar 

  77. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367

    Article  CAS  PubMed  Google Scholar 

  78. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E et al (2008) OpenMS–an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Fellers RT, Greer JB, Early BP, Yu X, LeDuc RD, Kelleher NL et al (2015) ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics 15:1235–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai W, Guner H, Gregorich ZR, Chen AJ, Ayaz-Guner S, Peng Y et al (2015) MASH suite pro: a comprehensive software tool for top-down proteomics. Mol Cell Proteomics 15:703–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yee AA, Savchenko A, Ignachenko A, Lukin J, Xu X, Skarina T et al (2005) NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc 127:16512–16517

    Article  CAS  PubMed  Google Scholar 

  83. Elsliger M-A, Deacon AM, Godzik A, Lesley SA, Wooley J, Wüthrich K et al (2010) The JCSG high-throughput structural biology pipeline. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O et al (2008) Protein production and purification. Nat Methods 5:135

    Article  PubMed  Google Scholar 

  85. Banci L, Bertini I, Luchinat C, Mori M (2010) NMR in structural proteomics and beyond. Prog Nucl Magn Reson Spectrosc 56:247

    Article  CAS  PubMed  Google Scholar 

  86. Krishnan V, Rupp B (2012) Macromolecular structure determination: comparison of x-ray crystallography and nmr spectroscopy. eLS 10:a0002716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Colgrave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, U., Wijffels, G., Howitt, C.A., Colgrave, M.L. (2019). Proteomics: Tools of the Trade. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_1

Download citation

Publish with us

Policies and ethics