Skip to main content

The Sharp Remez-Type Inequality for Even Trigonometric Polynomials on the Period

  • Chapter
  • First Online:
  • 419 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We prove that

$$\displaystyle \max _{t \in [-\pi ,\pi ]}{|Q(t)|} \leq T_{2n}(\sec {}(s/4)) = \frac 12 ((\sec {}(s/4) + \tan {}(s/4))^{2n} + (\sec {}(s/4) - \tan {}(s/4))^{2n})$$

for every even trigonometric polynomial Q of degree at most n with complex coefficients satisfying

$$\displaystyle m(\{t \in [-\pi ,\pi ]: |Q(t)| \leq 1\}) \geq 2\pi -s\,, \qquad s \in (0,2\pi )\,, $$

where m(A) denotes the Lebesgue measure of a measurable set \(A \subset {\mathbb {R}}\) and T 2n is the Chebyshev polynomial of degree 2n on [−1, 1] defined by \(T_{2n}(\cos t) = \cos {}(2nt)\) for \(t \in {\mathbb {R}}\). This inequality is sharp. We also prove that

$$\displaystyle\max _{t \in [-\pi ,\pi ]}{|Q(t)|} \leq T_{2n}(\sec {}(s/2)) = \frac 12 ((\sec {}(s/2) + \tan {}(s/2))^{2n} + (\sec {}(s/2) - \tan {}(s/2))^{2n})$$

for every trigonometric polynomial Q of degree at most n with complex coefficients satisfying

$$\displaystyle m(\{t \in [-\pi ,\pi ]: |Q(t)| \leq 1\}) \geq 2\pi -s\,, \qquad s \in (0,\pi )\,. $$

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Andrievskii, A note on a Remez-type inequality for trigonometric polynomials. J. Approx. Theory 116, 416–424 (2002)

    Article  MathSciNet  Google Scholar 

  2. V. Andrievskii, Weighted Remez- and Nikolskii-type inequalities on a quasismooth curve. Comput. Methods Funct. Theory 18, 511–527 (2018)

    Article  MathSciNet  Google Scholar 

  3. V. Andrievskii, St. Ruscheweyh, Remez-type inequalities in terms of linear measure. Comput. Methods Funct. Theory 5, 347–363 (2005)

    Article  MathSciNet  Google Scholar 

  4. B. Bojanov, Elementary proof of the Remez inequality. Am. Math. Monthly 100, 483–485 (1993)

    MathSciNet  MATH  Google Scholar 

  5. P.B. Borwein, T. Erdélyi, Remez-, Nikolskii-, and Markov-type inequalities for generalized nonnegative polynomials with restricted zeros. Constr. Approx. 8, 343–362 (1992)

    Article  MathSciNet  Google Scholar 

  6. P.B. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities (Springer, New York, 1995)

    Book  Google Scholar 

  7. P.B. Borwein, T. Erdélyi, Müntz spaces and Remez inequalities. Bull. Am. Math. Soc. 32, 38–42 (1995)

    Article  Google Scholar 

  8. P.B. Borwein, T. Erdélyi, Generalizations of Müntz’s Theorem via a Remez-type inequality for Müntz spaces. J. Am. Math. Soc. 10, 327–349 (1997)

    Article  Google Scholar 

  9. P.B. Borwein, T. Erdélyi, Pointwise Remez- and Nikolskii-type inequalities for exponential sums. Math. Ann. 316, 39–60 (2000)

    Article  MathSciNet  Google Scholar 

  10. A. Brudnyi, Y. Brudnyi, Remez type inequalities and Morrey-Campanato spaces on Ahlfors regular sets. Contemp. Math. 445, 19–44 (2007)

    Article  MathSciNet  Google Scholar 

  11. A. Brudnyi, Y. Yodmin, Norming sets and related Remez-type inequalities. J. Austral. Math. Soc. 100, 163–181 (2015)

    Article  MathSciNet  Google Scholar 

  12. R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993)

    Book  Google Scholar 

  13. D. Dryanov, Q.I. Rahman, On a polynomial inequality of E.J. Remez. Proc. Am. Math. Soc. 128, 1063–1070 (1999)

    Google Scholar 

  14. T. Erdélyi, The Remez inequality on the size of polynomials, in Approximation Theory VI, ed. by C.K. Chui, L.L. Schumaker, J.D. Wards (Academic, Boston, 1989), pp. 243–246

    Google Scholar 

  15. T. Erdélyi, A sharp Remez inequality on the size of constrained polynomials. J. Approx. Theory 63, 335–337 (1990)

    Article  MathSciNet  Google Scholar 

  16. T. Erdélyi, Remez-type inequalities on the size of generalized polynomials. J. Lond. Math. Soc. 45, 255–264 (1992)

    Article  MathSciNet  Google Scholar 

  17. T. Erdélyi, Remez-type inequalities and their applications. J. Comp. Appl. Math. 47, 167–210 (1993)

    Article  MathSciNet  Google Scholar 

  18. T. Erdélyi, The Remez inequality for linear combinations of shifted Gaussians. Math. Proc. Camb. Philos. Soc. 146, 523–530 (2009)

    Article  MathSciNet  Google Scholar 

  19. T. Erdélyi, P. Nevai, Lower bounds for the derivatives of polynomials and Remez-type inequalities. Trans. Am. Math. Soc. 349, 4953–4972 (1997)

    Article  MathSciNet  Google Scholar 

  20. T. Erdélyi, X. Li, E.B. Saff, Remez- and Nikolskii-type inequalities for logarithmic potentials. SIAM J. Math. Anal. 25, 365–383 (1994)

    Article  MathSciNet  Google Scholar 

  21. G. Freud, Orthogonal Polynomials (Pergamon Press, Oxford, 1971)

    MATH  Google Scholar 

  22. M.I. Ganzburg, Polynomial inequalities on measurable sets and their applications II. Weighted measures. J. Approx. Theory 106, 77–109 (2000)

    Article  MathSciNet  Google Scholar 

  23. M.I. Ganzburg, Polynomial inequalities on measurable sets and their applications. Constr. Approx. 17, 275–306 (2001)

    Article  MathSciNet  Google Scholar 

  24. M.I. Ganzburg, On a Remez-type inequality for trigonometric polynomials. J. Approx. Theory 16, 1233–1237 (2012)

    Article  MathSciNet  Google Scholar 

  25. A. Kroó, On Remez-type inequalities for polynomials in \({\mathbb {R}}^m\) and \({\mathbb {C}}^m\). Anal. Math. 27, 55–70 (2001)

    Google Scholar 

  26. A. Kroó, E.B. Saff, M. Yattselev, A Remez-type theorem for homogeneous polynomials. J. Lond. Math. Soc. 73, 783–796 (2006)

    Article  MathSciNet  Google Scholar 

  27. G.G. Lorentz, M. von Golitschek, Y. Makovoz, Constructive Approximation: Advanced Problems (Springer, Berlin, 1996)

    Book  Google Scholar 

  28. F. Nazarov, Local estimates for exponential polynomials and their applications to, inequalities of the uncertainty principle type. Algebra i Analiz 5, 3–66 (1993)

    MathSciNet  MATH  Google Scholar 

  29. F. Nazarov, Complete version of Turán’s lemma for trigonometric polynomials on the unit circumference, in Complex Analysis, Operators, and Related Topics, The S.A. Vinogradov Memorial Volume, vol. 113, ed. by V.P. Havin, N.K. Nikolskii (Springer, New York, 2000), pp. 239–246

    Chapter  Google Scholar 

  30. E. Nursultanov, S. Tikhonov, A sharp Remez inequality for trigonometric polynomials. Constr. Approx. 38, 101–132 (2013)

    Article  MathSciNet  Google Scholar 

  31. R. Pierzhala, Remez-type inequality on sets with cusps. Adv. Math. 281, 508–552 (2015)

    Article  MathSciNet  Google Scholar 

  32. E.J. Remez, Sur une propriété des polynômes de Tchebyscheff. Comm. Inst. Sci. Kharkow 13, 93–95 (1936)

    Google Scholar 

  33. V. Temlyakov, S. Tikhonov, Remez-type inequalities for the hyperbolic cross polynomials (2016). arXiv:1606.03773

    Google Scholar 

  34. Y. Yodmin, Remez-type inequality for discrete sets. Israel J. Math. 186, 45–60 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Erdélyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erdélyi, T. (2019). The Sharp Remez-Type Inequality for Even Trigonometric Polynomials on the Period. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_9

Download citation

Publish with us

Policies and ethics