Skip to main content

Mechanisms of Hemostasis: Contributions of Platelets, Coagulation Factors, and the Vessel Wall

  • Chapter
  • First Online:
Fundamentals of Vascular Biology

Abstract

Hemostasis is a physiological process that allows rapid, localized, and highly regulated closure of an injured blood vessel while maintaining normal blood flow. It involves platelets (primary hemostasis), coagulation factors (secondary hemostasis), as well as components of the vessel wall. Upon vessel injury, circulating platelets rapidly adhere to the exposed subendothelial matrix, leading to platelet activation and concomitant release of secondary feedback molecules to stimulate and recruit additional platelets from the circulation. Direct platelet-platelet binding produces a platelet plug (white thrombus). In parallel, a cascade of coagulation factors is induced, which leads to cleavage and cross-linking of soluble fibrinogen into insoluble fibrin, forming a tight network transforming the initial, unstable platelet thrombus to a stable thrombus (red thrombus). Numerous positive feedback loops as well as anticoagulant mechanisms guarantee locally restricted coagulation at defined cellular surfaces and prevent excessive blood loss while ensuring vascular integrity and unrestricted blood flow. During wound healing processes, the thrombus is dissolved by the fibrinolytic system, which degrades fibrin and re-establishes physiological blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghoshal K, Bhattacharyya M. Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. Sci World J. 2014;2014:781857.

    Article  Google Scholar 

  2. Machlus KR, Italiano JE Jr. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fong KP, Barry C, Tran AN, et al. Deciphering the human platelet sheddome. Blood. 2011;117(1):e15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12(5):261–73.

    Article  CAS  PubMed  Google Scholar 

  5. Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.

    Article  CAS  PubMed  Google Scholar 

  6. Denis MM, Tolley ND, Bunting M, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weyrich AS, Dixon DA, Pabla R, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A. 1998;95(10):5556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwertz H, Tolley ND, Foulks JM, et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med. 2006;203(11):2433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharda A, Flaumenhaft R. The life cycle of platelet granules. F1000Res. 2018;7:236.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Banerjee M, Whiteheart SW. The ins and outs of endocytic trafficking in platelet functions. Curr Opin Hematol. 2017;24(5):467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison P, Wilbourn B, Debili N, et al. Uptake of plasma fibrinogen into the alpha granules of human megakaryocytes and platelets. J Clin Invest. 1989;84(4):1320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ambrosio AL, Di Pietro SM. Storage pool diseases illuminate platelet dense granule biogenesis. Platelets. 2017;28(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  13. Semenov AV, Romanov YA, Loktionova SA, et al. Production of soluble P-selectin by platelets and endothelial cells. Biochemistry (Mosc). 1999;64(11):1326–35.

    CAS  Google Scholar 

  14. Patel-Hett S, Richardson JL, Schulze H, et al. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood. 2008;111(9):4605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teijeiro RG, Sotelo Silveira JR, Sotelo JR, Benech JC. Calcium efflux from platelet vesicles of the dense tubular system. Analysis of the possible contribution of the Ca2+ pump. Mol Cell Biochem. 1999;199(1–2):7–14.

    Article  CAS  PubMed  Google Scholar 

  16. White JG. The transfer of thorium particles from plasma to platelets and platelet granules. Am J Pathol. 1968;53(4):567–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Escolar G, Lopez-Vilchez I, Diaz-Ricart M, White JG, Galan AM. Internalization of tissue factor by platelets. Thromb Res. 2008;122(Suppl 1):S37–41.

    Article  CAS  PubMed  Google Scholar 

  18. White JG, Krumwiede M. Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood. 1987;69(4):1196–203.

    CAS  PubMed  Google Scholar 

  19. Selvadurai MV, Hamilton JR. Structure and function of the open canalicular system - the platelet’s specialized internal membrane network. Platelets. 2018;29(4):319–25.

    Article  CAS  PubMed  Google Scholar 

  20. Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med. 1996;47:315–31.

    Article  CAS  PubMed  Google Scholar 

  21. Geraldo RB, Sathler PC, Lourenco AL, et al. Platelets: still a therapeutical target for haemostatic disorders. Int J Mol Sci. 2014;15(10):17901–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med. 2011;17(11):1423–36.

    Article  CAS  PubMed  Google Scholar 

  23. Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost. 2009;102(2):248–57.

    CAS  PubMed  Google Scholar 

  24. Cimmino G, Golino P. Platelet biology and receptor pathways. J Cardiovasc Transl Res. 2013;6(3):299–309.

    Article  PubMed  Google Scholar 

  25. Randriamboavonjy V. In: Kerrigan S, Moran N, editors. Mechanisms involved in diabetes-associated platelet hyperactivation, the non-thrombotic role of platelets in health and disease: IntechOpen; 2015. https://doi.org/10.5772/60539. Available from: https://www.intechopen.com/books/the-non-thromboticrole-of-platelets-in-health-and-disease/mechanisms-involved-in-diabetes-associated-platelet-hyperactivation.

    Google Scholar 

  26. Watson SP, Auger JM, McCarty OJ, Pearce AC. GPVI and integrin alphaIIb beta3 signaling in platelets. J Thromb Haemost. 2005;3(8):1752–62.

    Article  CAS  PubMed  Google Scholar 

  27. Crook M. Platelet prothrombinase in health and disease. Blood Coagul Fibrinolysis. 1990;1(2):167–74.

    CAS  PubMed  Google Scholar 

  28. Tadokoro S, Shattil SJ, Eto K, et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science. 2003;302(5642):103–6.

    Article  CAS  PubMed  Google Scholar 

  29. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  30. Perutelli P, Mori PG. The human platelet membrane glycoprotein IIb/IIIa complex: a multi functional adhesion receptor. Haematologica. 1992;77(2):162–8.

    CAS  PubMed  Google Scholar 

  31. Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 2004;104(6):1606–15.

    Article  CAS  PubMed  Google Scholar 

  32. Haley KM, Recht M, McCarty OJ. Neonatal platelets: mediators of primary hemostasis in the developing hemostatic system. Pediatr Res. 2014;76(3):230–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schrottmaier WC, Kral JB, Badrnya S, Assinger A. Aspirin and P2Y12 inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost. 2015;114(3):478–89.

    Article  PubMed  Google Scholar 

  34. Sorrentino S, Studt JD, Medalia O, Tanuj Sapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol. 2015;94(3–4):129–38.

    Article  CAS  PubMed  Google Scholar 

  35. Bryckaert M, Rosa JP, Denis CV, Lenting PJ. Of von Willebrand factor and platelets. Cell Mol Life Sci. 2015;72(2):307–26.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki-Inoue K, Tulasne D, Shen Y, et al. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J Biol Chem. 2002;277(24):21561–6.

    Article  CAS  PubMed  Google Scholar 

  37. Ezumi Y, Shindoh K, Tsuji M, Takayama H. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. J Exp Med. 1998;188(2):267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrim N, Walsh TG, Consonni A, Torti M, Berndt MC, Metharom P. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation. PLoS One. 2014;9(11):e113679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kim S, Mangin P, Dangelmaier C, et al. Role of phosphoinositide 3-kinase beta in glycoprotein VI-mediated Akt activation in platelets. J Biol Chem. 2009;284(49):33763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gilio K, Munnix IC, Mangin P, et al. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation. J Biol Chem. 2009;284(49):33750–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knezevic I, Borg C, Le Breton GC. Identification of Gq as one of the G-proteins which copurify with human platelet thromboxane A2/prostaglandin H2 receptors. J Biol Chem. 1993;268(34):26011–7.

    CAS  PubMed  Google Scholar 

  42. Djellas Y, Manganello JM, Antonakis K, Le Breton GC. Identification of Galpha13 as one of the G-proteins that couple to human platelet thromboxane A2 receptors. J Biol Chem. 1999;274(20):14325–30.

    Article  CAS  PubMed  Google Scholar 

  43. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res. 2006;99(12):1293–304.

    Article  CAS  PubMed  Google Scholar 

  44. Storey RF, Sanderson HM, White AE, May JA, Cameron KE, Heptinstall S. The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br J Haematol. 2000;110(4):925–34.

    Article  CAS  PubMed  Google Scholar 

  45. Hechler B, Leon C, Vial C, et al. The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood. 1998;92(1):152–9.

    CAS  PubMed  Google Scholar 

  46. Hirsch E, Bosco O, Tropel P, et al. Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J. 2001;15(11):2019–21.

    Article  CAS  PubMed  Google Scholar 

  47. Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3(8):1800–14.

    Article  CAS  PubMed  Google Scholar 

  48. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–64.

    Article  CAS  PubMed  Google Scholar 

  49. Cohen S, Braiman A, Shubinsky G, Isakov N. Protein kinase C-theta in platelet activation. FEBS Lett. 2011;585(20):3208–15.

    Article  CAS  PubMed  Google Scholar 

  50. Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010;30(12):2341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in G alpha(q)-deficient mice. Nature. 1997;389(6647):183–6.

    Article  CAS  PubMed  Google Scholar 

  52. Martin V, Guillermet-Guibert J, Chicanne G, et al. Deletion of the p110beta isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood. 2010;115(10):2008–13.

    Article  CAS  PubMed  Google Scholar 

  53. Kim S, Jin J, Kunapuli SP. Relative contribution of G-protein-coupled pathways to protease-activated receptor-mediated Akt phosphorylation in platelets. Blood. 2006;107(3):947–54.

    Article  CAS  PubMed  Google Scholar 

  54. Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood. 2014;124(13):2013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hall KJ, Jones ML, Poole AW. Coincident regulation of PKCdelta in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling. Biochem J. 2007;406(3):501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vanhaesebroeck B, Whitehead MA, Pineiro R. Molecules in medicine mini-review: isoforms of PI3K in biology and disease. J Mol Med (Berl). 2016;94(1):5–11.

    Article  CAS  Google Scholar 

  57. Fougerat A, Gayral S, Malet N, Briand-Mesange F, Breton-Douillon M, Laffargue M. Phosphoinositide 3-kinases and their role in inflammation: potential clinical targets in atherosclerosis? Clin Sci (Lond). 2009;116(11):791–804.

    Article  CAS  Google Scholar 

  58. Woulfe DS. Akt signaling in platelets and thrombosis. Expert Rev Hematol. 2010;3(1):81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iwanaga S, Miyata T, Tokunaga F, Muta T. Molecular mechanism of hemolymph clotting system in limulus. Thromb Res. 1992;68(1):1–32.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi H, Azumi K, Yokosawa H. Hemocyte aggregation in the solitary ascidian Halocynthia roretzi: plasma factors, magnesium ion, and Met-Lys-bradykinin induce the aggregation. Biol Bull. 1994;186(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  61. Schneider W, Gattermann N. Megakaryocytes: origin of bleeding and thrombotic disorders. Eur J Clin Investig. 1994;24(Suppl 1):16–20.

    Article  CAS  Google Scholar 

  62. McKenzie SE, Taylor SM, Malladi P, et al. The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol. 1999;162(7):4311–8.

    CAS  PubMed  Google Scholar 

  63. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional toll-like receptor-4. Blood. 2005;106(7):2417–23.

    Article  CAS  PubMed  Google Scholar 

  64. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005;83(2):196–8.

    Article  CAS  PubMed  Google Scholar 

  65. Assinger A, Kral JB, Yaiw KC, et al. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol. 2014;34(4):801–9.

    Article  CAS  PubMed  Google Scholar 

  66. Panigrahi S, Ma Y, Hong L, et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res. 2013;112(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  67. Anabel AS, Eduardo PC, Pedro Antonio HC, et al. Human platelets express toll-like receptor 3 and respond to poly I:C. Hum Immunol. 2014;75(12):1244–51.

    Article  CAS  PubMed  Google Scholar 

  68. Koupenova M, Vitseva O, MacKay CR, et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood. 2014;124(5):791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Worth RG, Chien CD, Chien P, Reilly MP, McKenzie SE, Schreiber AD. Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp Hematol. 2006;34(11):1490–5.

    Article  CAS  PubMed  Google Scholar 

  70. Boilard E, Pare G, Rousseau M, et al. Influenza virus H1N1 activates platelets through FcgammaRIIA signaling and thrombin generation. Blood. 2014;123(18):2854–63.

    Article  CAS  PubMed  Google Scholar 

  71. Kraemer BF, Campbell RA, Schwertz H, et al. Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog. 2011;7(11):e1002355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets. 2005;16(2):121–31.

    Article  CAS  PubMed  Google Scholar 

  73. Dashty M, Akbarkhanzadeh V, Zeebregts CJ, et al. Characterization of coagulation factor synthesis in nine human primary cell types. Sci Rep. 2012;2:787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. McMichael M. New models of hemostasis. Top Companion Anim Med. 2012;27(2):40–5.

    Article  PubMed  Google Scholar 

  75. Dahlback B. Blood coagulation. Lancet. 2000;355(9215):1627–32.

    Article  CAS  PubMed  Google Scholar 

  76. Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth Analg. 2009;108(5):1447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gale AJ. Continuing education course #2: current understanding of hemostasis. Toxicol Pathol. 2011;39(1):273–80.

    Article  PubMed  Google Scholar 

  78. Lane DA, Philippou H, Huntington JA. Directing thrombin. Blood. 2005;106(8):2605–12.

    Article  CAS  PubMed  Google Scholar 

  79. Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost. 2016;14(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  80. Renne T, Schmaier AH, Nickel KF, Blomback M, Maas C. In vivo roles of factor XII. Blood. 2012;120(22):4296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith SA. The cell-based model of coagulation. J Vet Emerg Crit Care (San Antonio). 2009;19(1):3–10.

    Article  Google Scholar 

  82. Morrissey JH. Plasma factor VIIa: measurement and potential clinical significance. Haemostasis. 1996;26(Suppl 1):66–71.

    CAS  PubMed  Google Scholar 

  83. Tie JK, Carneiro JD, Jin DY, Martinhago CD, Vermeer C, Stafford DW. Characterization of vitamin K-dependent carboxylase mutations that cause bleeding and nonbleeding disorders. Blood. 2016;127(15):1847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.

    Article  CAS  PubMed  Google Scholar 

  85. Foley JH, Kim PY, Mutch NJ, Gils A. Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost. 2013;11(Suppl 1):306–15.

    Article  PubMed  Google Scholar 

  86. Swami A, Kaur V. von Willebrand disease: a concise review and update for the practicing physician. Clin Appl Thromb Hemost. 2017;23(8):900–10.

    Article  CAS  PubMed  Google Scholar 

  87. James PD, Notley C, Hegadorn C, et al. The mutational spectrum of type 1 von Willebrand disease: results from a Canadian cohort study. Blood. 2007;109(1):145–54.

    Article  CAS  PubMed  Google Scholar 

  88. Sanders YV, Fijnvandraat K, Boender J, et al. Bleeding spectrum in children with moderate or severe von Willebrand disease: relevance of pediatric-specific bleeding. Am J Hematol. 2015;90(12):1142–8.

    Article  CAS  PubMed  Google Scholar 

  89. Kessler CM, Knobl P. Acquired haemophilia: an overview for clinical practice. Eur J Haematol. 2015;95(Suppl 81):36–44.

    Article  CAS  PubMed  Google Scholar 

  90. Cote HC, Lord ST, Pratt KP. Gamma-chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the gamma chain of human fibrinogen. Blood. 1998;92(7):2195–212.

    CAS  PubMed  Google Scholar 

  91. Walton BL, Getz TM, Bergmeier W, Lin FC, Uitte de Willige S, Wolberg AS. The fibrinogen gammaA/gamma’ isoform does not promote acute arterial thrombosis in mice. J Thromb Haemost. 2014;12(5):680–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wypasek E, Undas A. Protein C and protein S deficiency - practical diagnostic issues. Adv Clin Exp Med. 2013;22(4):459–67.

    PubMed  Google Scholar 

  93. Castoldi E, Rosing J. APC resistance: biological basis and acquired influences. J Thromb Haemost. 2010;8(3):445–53.

    Article  CAS  PubMed  Google Scholar 

  94. Nishimura Y, Takagi Y. Strategy for cardiovascular surgery in patients with antithrombin III deficiency. Ann Thorac Cardiovasc Surg. 2018;24(4):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cilia La Corte AL, Philippou H, Ariens RA. Role of fibrin structure in thrombosis and vascular disease. Adv Protein Chem Struct Biol. 2011;83:75–127.

    Article  PubMed  CAS  Google Scholar 

  96. Ariens RA. Fibrin(ogen) and thrombotic disease. J Thromb Haemost. 2013;11(Suppl 1):294–305.

    Article  PubMed  Google Scholar 

  97. Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982;257(6):2912–9.

    CAS  PubMed  Google Scholar 

  98. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  99. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129(3):307–21.

    Article  CAS  PubMed  Google Scholar 

  100. Hajjar KA, Hamel NM. Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase. J Biol Chem. 1990;265(5):2908–16.

    CAS  PubMed  Google Scholar 

  101. Hayward CPM. How I investigate for bleeding disorders. Int J Lab Hematol. 2018;40(Suppl 1):6–14.

    Article  PubMed  Google Scholar 

  102. Sobczak AIS, Pitt SJ, Stewart AJ. Glycosaminoglycan neutralization in coagulation control. Arterioscler Thromb Vasc Biol. 2018;38(6):1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pearson JD. Endothelial cell function and thrombosis. Baillieres Best Pract Res Clin Haematol. 1999;12(3):329–41.

    Article  CAS  PubMed  Google Scholar 

  104. Vlodavsky I, Eldor A, Haimovitz-Friedman A, et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis. 1992;12(2):112–27.

    CAS  PubMed  Google Scholar 

  105. Valentijn KM, van Driel LF, Mourik MJ, et al. Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood. 2010;116(10):1807–16.

    Article  CAS  PubMed  Google Scholar 

  106. van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34(1):93–106.

    Article  PubMed  CAS  Google Scholar 

  107. Gu JM, Katsuura Y, Ferrell GL, Grammas P, Esmon CT. Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood. 2000;95(5):1687–93.

    CAS  PubMed  Google Scholar 

  108. Wu HL, Lin CI, Huang YL, et al. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem Biophys Res Commun. 2008;367(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  109. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S.

    Article  CAS  PubMed  Google Scholar 

  110. Osterud B, Bajaj MS, Bajaj SP. Sites of tissue factor pathway inhibitor (TFPI) and tissue factor expression under physiologic and pathologic conditions. On behalf of the subcommittee on Tissue Factor Pathway Inhibitor (TFPI) of the scientific and standardization committee of the ISTH. Thromb Haemost. 1995;73(5):873–5.

    Article  CAS  PubMed  Google Scholar 

  111. Jasuja R, Furie B, Furie BC. Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood. 2010;116(22):4665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bae JS, Yang L, Rezaie AR. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci U S A. 2007;104(8):2867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7(1):117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lipinska-Gediga M. Coagulopathy in sepsis - a new look at an old problem. Anaesthesiol Intensive Ther. 2016;48(5):352–9.

    Article  PubMed  Google Scholar 

  115. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davis RP, Miller-Dorey S, Jenne CN. Platelets and coagulation in infection. Clin Transl Immunology. 2016;5(7):e89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Opal SM, Kessler CM, Roemisch J, Knaub S. Antithrombin, heparin, and heparan sulfate. Crit Care Med. 2002;30(5 Suppl):S325–31.

    Article  CAS  PubMed  Google Scholar 

  118. Yamauchi T, Umeda F, Inoguchi T, Nawata H. Antithrombin III stimulates prostacyclin production by cultured aortic endothelial cells. Biochem Biophys Res Commun. 1989;163(3):1404–11.

    Article  CAS  PubMed  Google Scholar 

  119. Bajaj MS, Kuppuswamy MN, Saito H, Spitzer SG, Bajaj SP. Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci U S A. 1990;87(22):8869–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Warn-Cramer BJ, Rao LV, Maki SL, Rapaport SI. Modifications of extrinsic pathway inhibitor (EPI) and factor Xa that affect their ability to interact and to inhibit factor VIIa/tissue factor: evidence for a two-step model of inhibition. Thromb Haemost. 1988;60(3):453–6.

    Article  CAS  PubMed  Google Scholar 

  121. Stalboerger PG, Panetta CJ, Simari RD, Caplice NM. Plasmin proteolysis of endothelial cell and vessel wall associated tissue factor pathway inhibitor. Thromb Haemost. 2001;86(3):923–8.

    Article  CAS  PubMed  Google Scholar 

  122. Esmon CT. The endothelial cell protein C receptor. Thromb Haemost. 2000;83(5):639–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Assinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mussbacher, M., Kral-Pointner, J.B., Salzmann, M., Schrottmaier, W.C., Assinger, A. (2019). Mechanisms of Hemostasis: Contributions of Platelets, Coagulation Factors, and the Vessel Wall. In: Geiger, M. (eds) Fundamentals of Vascular Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12270-6_8

Download citation

Publish with us

Policies and ethics