Skip to main content

Realistic Vehicular Networks Simulations

  • Chapter
  • First Online:
Smart and Digital Cities

Part of the book series: Urban Computing ((UC))

  • 757 Accesses

Abstract

Intelligent transportation systems are one of the components to make smart cities through which they have sought to improve levels of safety, comfort, and efficiency of transportation systems. Vehicular networks support the exchange of messages by vehicles with the information necessary for proper functioning of these systems. Because of complexity of these communication networks, a technique widely used to evaluate their performance is simulation. However, a simulation problem involves choosing appropriate parameters to achieve realistic results. This work deals with the problem of realistic simulation in vehicular networks, through the simulation of a message dissemination application, where various simulation and application parameters are varied. The main contribution consists in analysis of results obtained according to the chosen parameters and the finding that these parameters must be adjusted properly to obtain results consistent with reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeles, W., Borin, V.P., Munaretto, A., Fonseca, M.: The impact of propagation models in the performance of ad hoc routing protocols for urban VANET. In: 84th Vehicular Technology Conference (VTC-Fall), pp. 1–5. IEEE, Piscataway (2016)

    Google Scholar 

  2. Avelar, E., Marques, L., dos Passos, D., Macedo, R., Dias, K., Nogueira, M.: Interoperability issues on heterogeneous wireless communication for smart cities. Comput. Commun. 58, 4–15 (2015)

    Article  Google Scholar 

  3. Bastani, S., Ozalla, D.T., Karaca, M.: On the performance of vehicular communications with a measurement-based radio propagation model. In: 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), pp. 6–11. IEEE, Piscataway (2016)

    Google Scholar 

  4. Bonola, M., Bracciale, L., Loreti, P., Amici, R., Rabuffi, A., Bianchi, G.: Opportunistic communication in smart city: experimental insight with small-scale taxi fleets as data carriers. Ad Hoc Netw. 43, 43–55 (2016)

    Article  Google Scholar 

  5. Carpenter, S.E.: Obstacle shadowing influences in VANET safety. In: 22nd International Conference on Network Protocols, pp. 480–482. IEEE, Piscataway (2014)

    Google Scholar 

  6. Carpenter, S.E., Sichitiu, M.L., Underwood, D.A., Patwardhan, M., Starr, S.: Evaluating VANET performance using ns-3. In: WNS3 Workshop on NS-3, pp. 3–4 (2014)

    Google Scholar 

  7. Celes, C., Silva, F.A., Boukerche, A., Andrade, R.M. de C., Loureiro, A.A.F.: Improving VANET simulation with calibrated vehicular mobility traces. IEEE Trans. Mob. Comput. 16, 3376–3389 (2017)

    Google Scholar 

  8. Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R.A.F., Loureiro, A.A.F.: Data communication in VANETs: protocols, applications and challenges. Ad Hoc Netw. 44, 90–103 (2016)

    Article  Google Scholar 

  9. Friis, H.T.: A note on a simple transmission formula. In: Proceedings of the Institute of Radio Engineers, vol. 34, no. 5, pp. 254–256. IEEE, Piscataway (1946)

    Google Scholar 

  10. Hagenauer, F., Sommer, C., Onishi, R., Wilhelm, M., Dressler, F., Altintas, O.: Interconnecting smart cities by vehicles: how feasible is it? In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 788–793. IEEE, Piscataway (2016)

    Google Scholar 

  11. He, J., Cai, L., Cheng, P., Pan, J.: Delay minimization for data dissemination in large-scale VANETs with buses and taxis. IEEE Trans. Mob. Comput. 15, 1939–1950 (2016)

    Article  Google Scholar 

  12. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - simulation of urban mobility. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)

    Google Scholar 

  13. Martinez, F.J., Fogue, M., Toh, C.K., Cano, J., Calafate, C.T., Manzoni, P.: Computer simulations of VANETs using realistic city topologies. Wirel. Pers. Commun. 69, 639–663 (2013)

    Article  Google Scholar 

  14. Nakagami, M.: The m-distribution, a general formula of intensity of rapid fading. In: Statistical Methods in Radio Wave Propagation, pp. 3–36. Pergamon Press, New York (1960)

    Google Scholar 

  15. Naumov, V., Baumann, R., Gross, T.: An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces. In: Proceedings of the Seventh ACM International Symposium on Mobile Ad Hoc Networking and Computing - MobiHoc 06, p. 108. ACM Press, New York (2006)

    Google Scholar 

  16. NS-3 Consortium. vanet-routing-compare.cc. https://www.nsnam.org/doxygen/vanet-routing-compare_8cc_source.html. Accessed 20 May 2018

  17. NS-3 Consortium. NS-3 Discrete Event Network Simulator. https://www.nsnam.org. Accessed 20 May 2018

  18. OpenSim Ltd. OMNET++ Discrete Event Simulator. https://www.omnetpp.org. Accessed 20 May 2018

  19. OSM Foundation. OpenStreetMap. https://www.openstreetmap.org. Accessed 20 May 2018

  20. Rappaport, T.S.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  21. Renda, M.E., Resta, G., Santi, P., Martelli, F., Franchini, A.: IEEE 802.11p VANets: experimental evaluation of packet inter-reception time. Comput. Commun. 75, 26–38 (2016)

    Google Scholar 

  22. Ros, F.J., Martinez, J.A., Ruiz, P.M.: A survey on modeling and simulation of vehicular networks: communications, mobility, and tools. Comput. Commun. 43, 1–15 (2014)

    Article  Google Scholar 

  23. Saini, M., Alelaiwi, A., Saddik, A. El: How close are we to realizing a pragmatic VANET solution? A meta-survey. ACM Comput. Surv. 48, 1–40 (2015)

    Article  Google Scholar 

  24. Sanguesa, J.A., Fogue, M., Garrido, P., Martinez, F.J., Cano, J.-C., Calafate, C.T.: A survey and comparative study of broadcast warning message dissemination schemes for VANETs. Mob. Inf. Syst. 2016, 1–18 (2016)

    Google Scholar 

  25. Sjoberg, K., Andres, P., Buburuzan, T., Brakemeier, A.: Cooperative intelligent transport systems in Europe: current deployment status and outlook. IEEE Veh. Technol. Mag. 12, 89–97 (2017)

    Article  Google Scholar 

  26. Standards Development Working Group. 1609 - Dedicated Short Range Communication Working Group. IEEE, Piscataway. https://standards.ieee.org/develop/wg/1609.html (2017). Accessed 20 May 2018

  27. Stepanov, I., Rothermel, K.: On the impact of a more realistic physical layer on MANET simulations results. Ad Hoc Netw. 6, 61–78 (2008)

    Article  Google Scholar 

  28. Uppoor, S., Trullols-Cruces, O., Fiore, M., Barcelo-Ordinas, J.M.: Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans. Mob. Comput. 13, 1061–1075 (2014)

    Article  Google Scholar 

  29. Vahdat-Nejad, H., Ramazani, A., Mohammadi, T., Mansoor, W.: A survey on context-aware vehicular network applications. Veh. Commun. 3, 43–57 (2016)

    Google Scholar 

  30. Yaqub, M.A., Ahmed, S.H., Bouk, S.H., Kim, D.: FBR: fleet based video retrieval in 3G and 4G enabled vehicular ad hoc networks. In: IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, Piscataway (2016)

    Google Scholar 

  31. Yin, X., Ma, X., Trivedi, K.S., Vinel, A.: Performance and reliability evaluation of BSM broadcasting in DSRC with multi-channel schemes. IEEE Trans. Comput. 63, 3101–3113 (2014)

    Article  MathSciNet  Google Scholar 

  32. Zarei, M., Rahmani, A.M.: Analysis of vehicular mobility in a dynamic free-flow highway. Veh. Commun. 7, 51–57 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago do Vale Saraiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

do Vale Saraiva, T., Vieira Campos, C.A. (2019). Realistic Vehicular Networks Simulations. In: Nazário Coelho, V., Machado Coelho, I., A.Oliveira, T., Ochi, L.S. (eds) Smart and Digital Cities. Urban Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-12255-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12255-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12254-6

  • Online ISBN: 978-3-030-12255-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics