Skip to main content

An Extended Langhaar’s Solution for Two-Dimensional Entry Microchannel Flows with High-Order Slip

  • 677 Accesses

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 200)

Abstract

The tremendous advances in micro-fabrication technology have brought numerous applications to the field of micro-scale science and engineering in recent decades. Microchannels are inseparable part of microfluidic technology which necessitate knowledge of flow behavior inside microchannels. For gaseous flows, the mean free path of a gas is comparable with characteristic length of a microchannel due to the micro-scale dimension of the channel. So, no-slip velocity assumption on the boundaries of channel is no longer valid, and a slip velocity needs to be defined. Although rigorous modeling of rarefied flows requires molecular solutions, researchers proposed use of slip models for applicability of the continuum equations. In slip-flow regime (i.e. Knudsen numbers up to 0.1), well-known Maxwell’s first-order slip model is applicable. For higher Knudsen numbers, higher-order slip models can be implemented to extend the applicability limit of the continuum equations. In the present study, Langhaar’s assumptions for entrance region of two-dimensional microchannels (microtube, slit-channel and concentric annular microchannel) have been implemented using high-order slip models. Different slip models proposed in the literature have been used and velocity profile, entrance length and apparent friction factor have been obtained in integral forms.

Keywords

  • Microchannel flow
  • High-order slip
  • Langhaar’s solution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-12232-4_6
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-12232-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Cetin, B., Ozer, M.B., Solmaz, M.E.: Microfluidic bio-particle manipulation for biotechnology. Biochem. Eng. J. 92, 63–82 (2014)

    CrossRef  Google Scholar 

  2. Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., Young, E.W.K.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15, 2364–2378 (2015)

    CrossRef  Google Scholar 

  3. Sugioka, K., Jian, X., Dong, W., Hanada, Y., Wang, Z., Cheng, Y., Midorikawa, K.: Femtosecond laser 3d micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014)

    CrossRef  Google Scholar 

  4. Kerse, C., Kalaycioglu, H., Elahi, P., Cetin, B., Kesim, D.K., Akcaalan, O., Yavas, S., Asik, M.D., Öktem, B., Hoogland, H., Holzwarth, R., Ilday, F.O.: Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016)

    CrossRef  Google Scholar 

  5. Yaman, M., Khudiyev, T., Ozgur, E., Kanik, M., Aktas, O., Ozgur, E.O., Deniz, H., Korkut, E., Bayindir, M.: Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10(7), 494–501 (2011)

    CrossRef  Google Scholar 

  6. Gad-el Hak, M.: The fluid mechanics of microdevices–the freeman scholar lecture. J. Fluids Eng. 121(1), 5–33 (1999)

    CrossRef  Google Scholar 

  7. Colin, S.: Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid. Nanofluid. 1(3), 268–279 (2005)

    CrossRef  Google Scholar 

  8. Agrawal, A.: A comprehensive review on gas flow in microchannels. Int. J. Micro-Nano Scale Transp. 2(1), 1–40 (2011)

    CrossRef  Google Scholar 

  9. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation. Springer Science & Business Media (2006)

    Google Scholar 

  10. Dongari, N., Agrawal, A., Agrawal, A.: Analytical solution of gaseous slip flow in long microchannels. Int. J. Heat Mass Transf. 50(17–18), 3411–3421 (2007)

    CrossRef  MATH  Google Scholar 

  11. Zhang, W.-M., Meng, G., Wei, X.: A review on slip models for gas microflows. Microfluid. Nanofluid. 13(6), 845–882 (2012)

    CrossRef  Google Scholar 

  12. Colin, S., Lalonde, P., Caen, R.: Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng. 25(3), 23–30 (2004)

    CrossRef  Google Scholar 

  13. Duan, Z.: Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels. Microfluid. Nanofluid. 12(5), 805–820 (2012)

    CrossRef  Google Scholar 

  14. Hadjiconstantinou, N.G.: Comment on cercignani’s second-order slip coefficient. Phys. Fluids 15(8), 2352–2354 (2003)

    CrossRef  MathSciNet  Google Scholar 

  15. Hadjiconstantinou, N.G.: Validation of a second-order slip model for dilute gas flows. Microscale Thermophys. Eng. 9(2), 137–153 (2005)

    CrossRef  Google Scholar 

  16. Beskok, A., Karniadakis, G.E.: Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    CrossRef  Google Scholar 

  17. Xue, H., Fan, Q.: A new analytic solution of the navier-stokes equations for microchannel flows. Microscale Thermophys. Eng. 4(2), 125–143 (2000)

    CrossRef  Google Scholar 

  18. Arkilic, E.B., Schmidt, M.A., Breuer, K.S.: Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6(2), 167–178 (1997)

    CrossRef  Google Scholar 

  19. Zohar, Y., Lee, S.Y.K., Lee, W.-Y., Jiang, L., Tong, P.: Subsonic gas flow in a straight and uniform microchannel. J. Fluid Mech. 472, 125–151 (2002)

    CrossRef  MATH  Google Scholar 

  20. Gat, A., Frankel, I., Weihs, D.: Gas flows through constricted shallow micro-channels. J. Fluid Mech. 602, 427–442 (2008)

    CrossRef  MATH  Google Scholar 

  21. Langhaar, H.L.: Steady flow in the transition length of a straight tube. J. Appl. Mech. 9(2), 55–58 (1942)

    Google Scholar 

  22. Sparrow, E.M., Lin, S.H., Lundgren, T.S.: Flow development in the hydrodynamic entrance region of tubes and ducts. Phys. Fluids 7(3), 338–347 (1964)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. McComas, S.T.: Hydrodynamic entrance lengths for ducts of arbitrary cross section. J. Basic Eng. 89(4), 847–850 (1967)

    CrossRef  Google Scholar 

  24. Chen, R.-Y.: Flow in the entrance region at low reynolds numbers. J. Fluids Eng. 95(1), 153–158 (1973)

    CrossRef  Google Scholar 

  25. Renksizbulut, M., Niazmand, H., Tercan, G.: Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int. J. Therm. Sci. 45(9), 870–881 (2006)

    CrossRef  Google Scholar 

  26. Duan, Z., Muzychka, Y.S.: Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J. Fluids Eng. 132(1), 011201 (2010)

    CrossRef  Google Scholar 

  27. Darbandi, M., Schneider, G.E.: Numerical study of the flow behavior in the uniform velocity entry flow problem. Numer. Heat Transf. Part A Appl. 34(5), 479–494 (1998)

    CrossRef  Google Scholar 

  28. Berman, N.S., Santos, V.A.: Laminar velocity profiles in developing flows using a laser doppler technique. AIChE J. 15, 323–327 (1969)

    CrossRef  Google Scholar 

  29. Molki, A., Khezzar, L., Goharzadeh, A.: Measurement of fluid velocity development in laminar pipe flow using laser doppler velocimetry. Euro. J. Phys. 34(5), 1127 (2013)

    CrossRef  Google Scholar 

  30. Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic Press, Cambridge (1978)

    Google Scholar 

  31. Sugino, Eitaro: Velocity distribution and pressure drop in the laminar inlet of a pipe with annular space. Bull. JSME 5(20), 651–655 (1962)

    CrossRef  Google Scholar 

  32. Han, L.S.: Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts. J. Appl. Mech. 27(3), 403–409 (1960)

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. Harley, J.C., Huang, Y., Bau, H.H., Zemel, J.N.: Gas flow in micro-channels. J. Fluid Mech. 284, 257–274 (1995)

    CrossRef  Google Scholar 

  34. Arkilic, E.B., Breuer, K.S., Schmidt, M.A.: Mass flow and tangential momentum accommodation in silicon micromachined channels. J. Fluid Mech. 437, 29–43 (2001)

    CrossRef  MATH  Google Scholar 

  35. Cercignani, C., Lorenzani, Silvia: Variational derivation of second-order slip coefficients on the basis of the boltzmann equation for hard-sphere molecules. Phys. Fluids 22(6), 062004 (2010)

    CrossRef  MATH  Google Scholar 

  36. Cetin, B., Yazicioglu, A.G., Kakac, S.: Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation-An extended Graetz problem. Int. J. Therm. Sci. 48, 1673–1678 (2009)

    CrossRef  Google Scholar 

  37. Cetin, B., Bayer, O.: Evaluation of Nusselt number for a flow in a microtube using second-order slip model. Therm. Sci. 15(Suppl. 1), 103–109 (2011)

    CrossRef  Google Scholar 

  38. Çetin, Barbaros: Effect of Thermal Creep on Heat Transfer for a Two-Dimensional Microchannel Flow: An Analytical Approach. J. Heat Transf. 135(10), 101007–101008 (2013)

    CrossRef  Google Scholar 

  39. Çetin, B., Zeinali, S.: Analysis of heat transfer and entropy generation for a low-Peclet-number microtube flow using a second-order slip model: an extended-Graetz problem. J. Eng. Math. 89(1), 13–25 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Çetin .

Editor information

Editors and Affiliations

Appendix: Velocity Profile for Concentric Annular Microchannel

Appendix: Velocity Profile for Concentric Annular Microchannel

Velocity profile is expressed as

$$\begin{aligned} \lambda (\gamma ,\text {q})=\mathcal {A}(\gamma )I_0(\gamma \text {q})+\mathcal {B}(\gamma )K_0(\gamma \text {q}) + \mathcal {C}(\gamma ) \end{aligned}$$
(57)

Using the first-order slip model coefficients \(\mathcal {A}\), \(\mathcal {B}\) and \(\mathcal {C}\) can be defined as:

$$\begin{aligned} \mathcal {A}=\frac{\mathcal {A}_1^{(f)}}{\mathcal {A}_2^{(f)}}, \quad \mathcal {B}=\frac{\mathcal {B}_1^{(f)}}{\mathcal {B}_2^{(f)}},\quad \mathcal {C}=\frac{\mathcal {C}_1^{(f)}}{\mathcal {C}_2^{(f)}} \end{aligned}$$
(58)

Coefficient \(\mathcal {A}\) can be expressed as:

$$ \begin{aligned} \begin{aligned} \mathcal {A}_1^{(f)}&= \gamma (m^2-1) \Pi _1\\ \mathcal {A}_2^{(f)}&= \left[ \Delta _1I_1(\gamma m)-\Delta _2I_0(\gamma m)-2I_1(\gamma )\right] \Pi _1 \& \left[ \Delta _1K_1(\gamma m)-\Delta _2K_0(\gamma m)-2K_1(\gamma )\right] \Pi _2 \end{aligned} \end{aligned}$$
(59)

where

(60)

Coefficient \(\mathcal {B}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {B}_1^{(f)}&= \gamma (m^2-1) \Pi _2\\ \mathcal {B}_2^{(f)}&= \Pi _3I_1(\gamma m) + \Pi _4I_0(\gamma m) + \Pi _5I_1(\gamma ) + \Pi _6I_0(\gamma )-4/\gamma \\ \end{aligned} \end{aligned}$$
(61)

where

(62)

Coefficient \(\mathcal {C}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {C}_1^{(f)}&= \left[ \Delta _5I_1(\gamma m)-\Delta _2I_0(\gamma m)\right] \Pi _7 - \left[ \Delta _5I_1(\gamma )-\Delta _2I_0(\gamma )\right] \Pi _8 \\ \mathcal {C}_2^{(f)}&= -\mathcal {B}_2^{(f)} \end{aligned} \end{aligned}$$
(63)

where

(64)

Using general slip model, coefficients \(\mathcal {A}\), \(\mathcal {B}\) and \(\mathcal {C}\) can also be expressed as:

$$\begin{aligned} \mathcal {A} =\frac{\mathcal {A}_1^{(g)}}{\mathcal {A}_2^{(g)}}, \quad \mathcal {B}=\frac{\mathcal {B}_1^{(g)}}{B_2^{(g)}}, \quad \mathcal {C}=\frac{\mathcal {C}_1^{(g)}}{\mathcal {C}_2^{(g)}} \end{aligned}$$
(65)

Coefficient \(\mathcal {A}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {A}_1^{(g)}&= (1-m^2) \Pi _9\\ \mathcal {A}_2^{(g)}&= \left\{ \Delta _6 I_1(\gamma m) + (m^2-1) I_0(\gamma m)-2/\gamma \left[ m I_1(\gamma m) + I_1(\gamma )\right] \right\} \Pi _9\\&\quad +\left\{ \Delta _6 K_1(\gamma m) - (m^2-1) K_0(\gamma m)-2/\gamma \left[ m K_1(\gamma m) + K_1(\gamma )\right] \right\} \Pi _{10} \end{aligned} \end{aligned}$$
(66)

where

(67)

Coefficient \(\mathcal {B}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {B}_1^{(g)}&= \Delta _5\left[ \tilde{b}_2I_1(\gamma m) + \tilde{b}_1I_1(\gamma )\right] + \Delta _2\tilde{b}_1\tilde{b}_2\left[ I_0(\gamma m) + I_0(\gamma )\right] \\ \mathcal {B}_2^{(g)}&= \Pi _{11}I_1(\gamma m) + \Pi _{12}I_0(\gamma m) + \Pi _{13}I_1(\gamma ) + \Pi _{14}I_0(\gamma )-4\tilde{b}_1\tilde{b}_2/\gamma \\ \end{aligned} \end{aligned}$$
(68)

where

(69)

The coefficients \(b_1\) and \(b_2\) are defined in Eq. (38). Coefficient \(\mathcal {C}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {C}_1^{(g)}&= \left[ \Delta _5I_1(\gamma m)+\tilde{b}_1\Delta _2I_0(\gamma m)\right] \Pi _{15} + \left[ \Delta _5K_1(\gamma m)+\tilde{b}_1\Delta _2K_0(\gamma m)\right] \Pi _{16} \\ \mathcal {C}_2^{(g)}&= -\mathcal {B}_2^{(g)}\\ \end{aligned} \end{aligned}$$
(70)

where

(71)

Fully-developed velocity profile using first-order slip model slip model can be written as:

$$\begin{aligned} \lambda _{fd}^{(f)}=\frac{\mathcal {Q}_1}{\mathcal {Q}_2} \end{aligned}$$
(72)

where

(73)

and for general slip model, fully-developed velocity can be written as:

$$\begin{aligned} \lambda _{fd}^{(g)}=\frac{\mathcal {S}_1}{\mathcal {S}_2} \end{aligned}$$
(74)

where

(75)
(76)

The coefficients \(b_1\) and \(b_2\) are defined in Eq. (39), and and .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rasooli, R., Çetin, B. (2019). An Extended Langhaar’s Solution for Two-Dimensional Entry Microchannel Flows with High-Order Slip. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)