Skip to main content

An Extended Langhaar’s Solution for Two-Dimensional Entry Microchannel Flows with High-Order Slip

  • Chapter
  • First Online:
  • 773 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

Abstract

The tremendous advances in micro-fabrication technology have brought numerous applications to the field of micro-scale science and engineering in recent decades. Microchannels are inseparable part of microfluidic technology which necessitate knowledge of flow behavior inside microchannels. For gaseous flows, the mean free path of a gas is comparable with characteristic length of a microchannel due to the micro-scale dimension of the channel. So, no-slip velocity assumption on the boundaries of channel is no longer valid, and a slip velocity needs to be defined. Although rigorous modeling of rarefied flows requires molecular solutions, researchers proposed use of slip models for applicability of the continuum equations. In slip-flow regime (i.e. Knudsen numbers up to 0.1), well-known Maxwell’s first-order slip model is applicable. For higher Knudsen numbers, higher-order slip models can be implemented to extend the applicability limit of the continuum equations. In the present study, Langhaar’s assumptions for entrance region of two-dimensional microchannels (microtube, slit-channel and concentric annular microchannel) have been implemented using high-order slip models. Different slip models proposed in the literature have been used and velocity profile, entrance length and apparent friction factor have been obtained in integral forms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cetin, B., Ozer, M.B., Solmaz, M.E.: Microfluidic bio-particle manipulation for biotechnology. Biochem. Eng. J. 92, 63–82 (2014)

    Article  Google Scholar 

  2. Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., Young, E.W.K.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15, 2364–2378 (2015)

    Article  Google Scholar 

  3. Sugioka, K., Jian, X., Dong, W., Hanada, Y., Wang, Z., Cheng, Y., Midorikawa, K.: Femtosecond laser 3d micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014)

    Article  Google Scholar 

  4. Kerse, C., Kalaycioglu, H., Elahi, P., Cetin, B., Kesim, D.K., Akcaalan, O., Yavas, S., Asik, M.D., Öktem, B., Hoogland, H., Holzwarth, R., Ilday, F.O.: Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016)

    Article  Google Scholar 

  5. Yaman, M., Khudiyev, T., Ozgur, E., Kanik, M., Aktas, O., Ozgur, E.O., Deniz, H., Korkut, E., Bayindir, M.: Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10(7), 494–501 (2011)

    Article  Google Scholar 

  6. Gad-el Hak, M.: The fluid mechanics of microdevices–the freeman scholar lecture. J. Fluids Eng. 121(1), 5–33 (1999)

    Article  Google Scholar 

  7. Colin, S.: Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid. Nanofluid. 1(3), 268–279 (2005)

    Article  Google Scholar 

  8. Agrawal, A.: A comprehensive review on gas flow in microchannels. Int. J. Micro-Nano Scale Transp. 2(1), 1–40 (2011)

    Article  Google Scholar 

  9. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation. Springer Science & Business Media (2006)

    Google Scholar 

  10. Dongari, N., Agrawal, A., Agrawal, A.: Analytical solution of gaseous slip flow in long microchannels. Int. J. Heat Mass Transf. 50(17–18), 3411–3421 (2007)

    Article  MATH  Google Scholar 

  11. Zhang, W.-M., Meng, G., Wei, X.: A review on slip models for gas microflows. Microfluid. Nanofluid. 13(6), 845–882 (2012)

    Article  Google Scholar 

  12. Colin, S., Lalonde, P., Caen, R.: Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng. 25(3), 23–30 (2004)

    Article  Google Scholar 

  13. Duan, Z.: Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels. Microfluid. Nanofluid. 12(5), 805–820 (2012)

    Article  Google Scholar 

  14. Hadjiconstantinou, N.G.: Comment on cercignani’s second-order slip coefficient. Phys. Fluids 15(8), 2352–2354 (2003)

    Article  MathSciNet  Google Scholar 

  15. Hadjiconstantinou, N.G.: Validation of a second-order slip model for dilute gas flows. Microscale Thermophys. Eng. 9(2), 137–153 (2005)

    Article  Google Scholar 

  16. Beskok, A., Karniadakis, G.E.: Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Article  Google Scholar 

  17. Xue, H., Fan, Q.: A new analytic solution of the navier-stokes equations for microchannel flows. Microscale Thermophys. Eng. 4(2), 125–143 (2000)

    Article  Google Scholar 

  18. Arkilic, E.B., Schmidt, M.A., Breuer, K.S.: Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6(2), 167–178 (1997)

    Article  Google Scholar 

  19. Zohar, Y., Lee, S.Y.K., Lee, W.-Y., Jiang, L., Tong, P.: Subsonic gas flow in a straight and uniform microchannel. J. Fluid Mech. 472, 125–151 (2002)

    Article  MATH  Google Scholar 

  20. Gat, A., Frankel, I., Weihs, D.: Gas flows through constricted shallow micro-channels. J. Fluid Mech. 602, 427–442 (2008)

    Article  MATH  Google Scholar 

  21. Langhaar, H.L.: Steady flow in the transition length of a straight tube. J. Appl. Mech. 9(2), 55–58 (1942)

    Google Scholar 

  22. Sparrow, E.M., Lin, S.H., Lundgren, T.S.: Flow development in the hydrodynamic entrance region of tubes and ducts. Phys. Fluids 7(3), 338–347 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. McComas, S.T.: Hydrodynamic entrance lengths for ducts of arbitrary cross section. J. Basic Eng. 89(4), 847–850 (1967)

    Article  Google Scholar 

  24. Chen, R.-Y.: Flow in the entrance region at low reynolds numbers. J. Fluids Eng. 95(1), 153–158 (1973)

    Article  Google Scholar 

  25. Renksizbulut, M., Niazmand, H., Tercan, G.: Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int. J. Therm. Sci. 45(9), 870–881 (2006)

    Article  Google Scholar 

  26. Duan, Z., Muzychka, Y.S.: Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J. Fluids Eng. 132(1), 011201 (2010)

    Article  Google Scholar 

  27. Darbandi, M., Schneider, G.E.: Numerical study of the flow behavior in the uniform velocity entry flow problem. Numer. Heat Transf. Part A Appl. 34(5), 479–494 (1998)

    Article  Google Scholar 

  28. Berman, N.S., Santos, V.A.: Laminar velocity profiles in developing flows using a laser doppler technique. AIChE J. 15, 323–327 (1969)

    Article  Google Scholar 

  29. Molki, A., Khezzar, L., Goharzadeh, A.: Measurement of fluid velocity development in laminar pipe flow using laser doppler velocimetry. Euro. J. Phys. 34(5), 1127 (2013)

    Article  Google Scholar 

  30. Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic Press, Cambridge (1978)

    Google Scholar 

  31. Sugino, Eitaro: Velocity distribution and pressure drop in the laminar inlet of a pipe with annular space. Bull. JSME 5(20), 651–655 (1962)

    Article  Google Scholar 

  32. Han, L.S.: Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts. J. Appl. Mech. 27(3), 403–409 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  33. Harley, J.C., Huang, Y., Bau, H.H., Zemel, J.N.: Gas flow in micro-channels. J. Fluid Mech. 284, 257–274 (1995)

    Article  Google Scholar 

  34. Arkilic, E.B., Breuer, K.S., Schmidt, M.A.: Mass flow and tangential momentum accommodation in silicon micromachined channels. J. Fluid Mech. 437, 29–43 (2001)

    Article  MATH  Google Scholar 

  35. Cercignani, C., Lorenzani, Silvia: Variational derivation of second-order slip coefficients on the basis of the boltzmann equation for hard-sphere molecules. Phys. Fluids 22(6), 062004 (2010)

    Article  MATH  Google Scholar 

  36. Cetin, B., Yazicioglu, A.G., Kakac, S.: Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation-An extended Graetz problem. Int. J. Therm. Sci. 48, 1673–1678 (2009)

    Article  Google Scholar 

  37. Cetin, B., Bayer, O.: Evaluation of Nusselt number for a flow in a microtube using second-order slip model. Therm. Sci. 15(Suppl. 1), 103–109 (2011)

    Article  Google Scholar 

  38. Çetin, Barbaros: Effect of Thermal Creep on Heat Transfer for a Two-Dimensional Microchannel Flow: An Analytical Approach. J. Heat Transf. 135(10), 101007–101008 (2013)

    Article  Google Scholar 

  39. Çetin, B., Zeinali, S.: Analysis of heat transfer and entropy generation for a low-Peclet-number microtube flow using a second-order slip model: an extended-Graetz problem. J. Eng. Math. 89(1), 13–25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Çetin .

Editor information

Editors and Affiliations

Appendix: Velocity Profile for Concentric Annular Microchannel

Appendix: Velocity Profile for Concentric Annular Microchannel

Velocity profile is expressed as

$$\begin{aligned} \lambda (\gamma ,\text {q})=\mathcal {A}(\gamma )I_0(\gamma \text {q})+\mathcal {B}(\gamma )K_0(\gamma \text {q}) + \mathcal {C}(\gamma ) \end{aligned}$$
(57)

Using the first-order slip model coefficients \(\mathcal {A}\), \(\mathcal {B}\) and \(\mathcal {C}\) can be defined as:

$$\begin{aligned} \mathcal {A}=\frac{\mathcal {A}_1^{(f)}}{\mathcal {A}_2^{(f)}}, \quad \mathcal {B}=\frac{\mathcal {B}_1^{(f)}}{\mathcal {B}_2^{(f)}},\quad \mathcal {C}=\frac{\mathcal {C}_1^{(f)}}{\mathcal {C}_2^{(f)}} \end{aligned}$$
(58)

Coefficient \(\mathcal {A}\) can be expressed as:

$$ \begin{aligned} \begin{aligned} \mathcal {A}_1^{(f)}&= \gamma (m^2-1) \Pi _1\\ \mathcal {A}_2^{(f)}&= \left[ \Delta _1I_1(\gamma m)-\Delta _2I_0(\gamma m)-2I_1(\gamma )\right] \Pi _1 \& \left[ \Delta _1K_1(\gamma m)-\Delta _2K_0(\gamma m)-2K_1(\gamma )\right] \Pi _2 \end{aligned} \end{aligned}$$
(59)

where

(60)

Coefficient \(\mathcal {B}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {B}_1^{(f)}&= \gamma (m^2-1) \Pi _2\\ \mathcal {B}_2^{(f)}&= \Pi _3I_1(\gamma m) + \Pi _4I_0(\gamma m) + \Pi _5I_1(\gamma ) + \Pi _6I_0(\gamma )-4/\gamma \\ \end{aligned} \end{aligned}$$
(61)

where

(62)

Coefficient \(\mathcal {C}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {C}_1^{(f)}&= \left[ \Delta _5I_1(\gamma m)-\Delta _2I_0(\gamma m)\right] \Pi _7 - \left[ \Delta _5I_1(\gamma )-\Delta _2I_0(\gamma )\right] \Pi _8 \\ \mathcal {C}_2^{(f)}&= -\mathcal {B}_2^{(f)} \end{aligned} \end{aligned}$$
(63)

where

(64)

Using general slip model, coefficients \(\mathcal {A}\), \(\mathcal {B}\) and \(\mathcal {C}\) can also be expressed as:

$$\begin{aligned} \mathcal {A} =\frac{\mathcal {A}_1^{(g)}}{\mathcal {A}_2^{(g)}}, \quad \mathcal {B}=\frac{\mathcal {B}_1^{(g)}}{B_2^{(g)}}, \quad \mathcal {C}=\frac{\mathcal {C}_1^{(g)}}{\mathcal {C}_2^{(g)}} \end{aligned}$$
(65)

Coefficient \(\mathcal {A}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {A}_1^{(g)}&= (1-m^2) \Pi _9\\ \mathcal {A}_2^{(g)}&= \left\{ \Delta _6 I_1(\gamma m) + (m^2-1) I_0(\gamma m)-2/\gamma \left[ m I_1(\gamma m) + I_1(\gamma )\right] \right\} \Pi _9\\&\quad +\left\{ \Delta _6 K_1(\gamma m) - (m^2-1) K_0(\gamma m)-2/\gamma \left[ m K_1(\gamma m) + K_1(\gamma )\right] \right\} \Pi _{10} \end{aligned} \end{aligned}$$
(66)

where

(67)

Coefficient \(\mathcal {B}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {B}_1^{(g)}&= \Delta _5\left[ \tilde{b}_2I_1(\gamma m) + \tilde{b}_1I_1(\gamma )\right] + \Delta _2\tilde{b}_1\tilde{b}_2\left[ I_0(\gamma m) + I_0(\gamma )\right] \\ \mathcal {B}_2^{(g)}&= \Pi _{11}I_1(\gamma m) + \Pi _{12}I_0(\gamma m) + \Pi _{13}I_1(\gamma ) + \Pi _{14}I_0(\gamma )-4\tilde{b}_1\tilde{b}_2/\gamma \\ \end{aligned} \end{aligned}$$
(68)

where

(69)

The coefficients \(b_1\) and \(b_2\) are defined in Eq. (38). Coefficient \(\mathcal {C}\) can be expressed as:

$$\begin{aligned} \begin{aligned} \mathcal {C}_1^{(g)}&= \left[ \Delta _5I_1(\gamma m)+\tilde{b}_1\Delta _2I_0(\gamma m)\right] \Pi _{15} + \left[ \Delta _5K_1(\gamma m)+\tilde{b}_1\Delta _2K_0(\gamma m)\right] \Pi _{16} \\ \mathcal {C}_2^{(g)}&= -\mathcal {B}_2^{(g)}\\ \end{aligned} \end{aligned}$$
(70)

where

(71)

Fully-developed velocity profile using first-order slip model slip model can be written as:

$$\begin{aligned} \lambda _{fd}^{(f)}=\frac{\mathcal {Q}_1}{\mathcal {Q}_2} \end{aligned}$$
(72)

where

(73)

and for general slip model, fully-developed velocity can be written as:

$$\begin{aligned} \lambda _{fd}^{(g)}=\frac{\mathcal {S}_1}{\mathcal {S}_2} \end{aligned}$$
(74)

where

(75)
(76)

The coefficients \(b_1\) and \(b_2\) are defined in Eq. (39), and and .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasooli, R., Çetin, B. (2019). An Extended Langhaar’s Solution for Two-Dimensional Entry Microchannel Flows with High-Order Slip. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics