Skip to main content

Model Updating of Fluid-Structure Interaction Effects on Piping System

  • Conference paper
  • First Online:

Abstract

The main goal of this paper is to propose a simplified model to predict the dynamic behavior; mainly vibration under effects of fluid. Firstly, an experiment is carefully designed incorporating important parameters of the system and experimental modal analysis is performed for solid only and with fluid. Then, modal analysis using FEM is performed in real scale 3D model of the test rig and the obtained results is approximated to experimental frequency of the system. Then, a simplified model is developed, which appends the results of explicitly computed mass and stiffness of supports, to a solid only FEM. The new model is analyzed and updated till it is considerably close to the results obtained previously. Based on sensitivity analysis, set of model parameters is selected for the model updating process. Response surface method is implemented to find values of model parameters yielding results closest to the experimental. The results can provide a basis for further experimental and numerical dynamic analysis and optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Laithier, B.E., Païdoussis, M.P.: The equations of motion of initially stressed Timoshenko tubular beams conveying fluid. J. Sound Vib. 79(2), 175–195 (1981). https://doi.org/10.1016/0022-460X(81)90367-9

    Article  MATH  Google Scholar 

  2. Hashemi, M.R., Abedini, M.J., Simos, T.E., Psihoyios, G., Tsitouras, C.: Numerical modelling of water hammer using differential quadrature method. AIP Conf. Proc. 936, 263–266 (2007). https://doi.org/10.1063/1.2790125

    Article  Google Scholar 

  3. Ibrahim, R.A.: Mechanics of pipes conveying fluids-part II: applications and fuidelastic problems. J. Press. Vessel Technol. ASME. 133(2), 1–30 (2011). https://doi.org/10.1115/1.4001270

    Article  Google Scholar 

  4. Yi-min, H., Yong-shou, L., Bao-hui, L., Yan-jiang, L., Zhu-feng, Y.: Natural frequency analysis of fluid conveying pipeline with different boundary conditions. Nucl. Eng. Des. 240(3), 461–467 (2010). https://doi.org/10.1016/j.nucengdes.2009.11.038

    Article  Google Scholar 

  5. Zhang, L., Tijsseling, A.S., Vardy, A.E.: FSI analysis of liquid-filled pipes. J. Sound Vib. 224(1), 69–99 (1999). https://doi.org/10.1006/jsvi.1999.2158

    Article  Google Scholar 

  6. Sreejith, B., Jayaraj, K., Ganesan, N., Padmanabhan, C., Chellapandi, P., Selvaraj, P.: Finite element analysis of fluid-structure interaction in pipeline systems. Nucl. Eng. Des. 227(3), 313–322 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.005

    Article  Google Scholar 

  7. Grant, I.: Flow induced vibrations in pipes, a finite element approach. ETD Arch. 633, 74 (2010)

    Google Scholar 

  8. Dubyk, I., Orynyak, I.: Fluid-structure interaction in free vibration analysis of pipelines. Sci. J. Ternopil. Natl. Tech. Univ. 1(81), 49–58 (2016)

    Google Scholar 

  9. Li, S., Karney, B.W., Liu, G.: FSI research in pipeline systems—a review of the literature. J. Fluids Struct. 57, 277–297 (2015). https://doi.org/10.1016/j.jfluidstructs.2015.06.020

    Article  Google Scholar 

  10. Escaler, X., De La Torre, O., Goggins, J.: Experimental and numerical analysis of directional added mass effects in partially liquid-filled horizontal pipes. J. Fluids Struct. 69, 252–264 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.01.001

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the support of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srijan Rajbamshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajbamshi, S., Guo, Q., Zhan, M. (2020). Model Updating of Fluid-Structure Interaction Effects on Piping System. In: Linderholt, A., Allen, M., Mayes, R., Rixen, D. (eds) Dynamic Substructures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12184-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12184-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12183-9

  • Online ISBN: 978-3-030-12184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics