The Chemistry of Strigolactones

  • Cristina PrandiEmail author
  • Christopher S. P. McErlean


Focus of this chapter is the chemistry of Strigolactones. The structural features that identify the canonical versus non canonical Strigolactones, as well as the stereochemistry of the Strigol type and Orobanchol type families will be described. A special emphasis will be devoted to the total synthesis of natural Strigolactones as the most reliable and recommended method for successful structure elucidation of these natural products. However, due the complexity of the target molecules and to the high stereochemical control required to retain bioactivity, the synthesis of natural Strigolactones is currently not feasible on a multigram scale for applications in agriculture. In order to study the effect of Strigolactones on various biological processes, model compounds were designed and prepared. Synthetic Strigolactones can be classified into two main categories: (a) analogues, whose structure is very similar to natural SLs; (b) mimics, whose structure is much simpler, but showing a bioactivity resembling that of SLs. A survey of the most promising structures for agricultural applications and the synthetic pathways to access them is herein provided.


Butenolide Stereocenter Enel ether Canonical and non canonical Enantiomers Diasteromers 



Asymmetric induction

A term applied to the selective synthesis of one diastereomeric form of a compound resulting from the influence of an existing chiral centre adjacent to the developing asymmetric carbon atom.

Chiral auxiliary

Is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions.


A term which may be applied to any asymmetric object or molecule. The property of nonidentity of an object with its mirror image.


A series of related techniques for the separation of a mixture of compounds by their distribution between two phases. In gas-liquid chromatography, the distribution is between a gaseous and a liquid phase. In column chromatography, the distribution is between a liquid and a solid phase.

Circular dichroism

The property (as of an optically active medium) of unequal absorption of right and left plane-polarized light so that the emergent light is elliptically polarized.


The order and relative spatial arrangement of the atoms in a molecule. Absolute configuration is when the relative three-dimensional arrangements in space of atoms in a chiral molecule have been correlated with an absolute standard.


A pair of isomers which are related as mirror images of one another.

Enantioselective synthesis, also called asymmetric synthesis

A chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereoisomeric) products in unequal amounts.

Diastereomers (or diastereoisomers)

Stereoisomeric structures which are not enantiomers (mirror images) of one another. Often applied to systems which differ only in the configuration at one carbon atom, e.g. meso- and d- or l-tartaric acids are diastereoisomeric.


The phenomenon in which plane-polarized light is turned in a clockwise direction.


Compounds having the same atomic composition (constitution) but differing in their chemical structure. They include structural isomers (chain or positional), tautomeric isomers, and stereoisomers—including geometrical isomers, optical isomers, and conformational isomers.

Mass spectrometry

A form of spectrometry in which, generally, high-energy electrons are bombarded onto a sample and this generates charged fragments of the parent substance; these ions are then focused by electrostatic and magnetic fields to give a spectrum of the charged fragments.

Nuclear magnetic resonance (NMR) spectroscopy

A form of spectroscopy which depends on the absorption and emission of energy arising from changes in the spin states of the nucleus of an atom. For aggregates of atoms, as in molecules, minor variations in these energy changes are caused by the local chemical environment. The energy changes used are in the radiofrequency range of the electromagnetic spectrum and depend upon the magnitude of an applied magnetic field.

Racemic mixture, racemate

An equimolar mixture of the two enantiomeric isomers of a compound. As a consequence of the equal numbers of levo- and dextrorotatory molecules present in a racemate, there is no net rotation of plane-polarized light.


The separation of a racemate into its two enantiomers by means of some chiral agency.


The representation of a compound by two or more canonical structures in which the valence electrons are rearranged to give structures of similar probability. The actual structure is considered to be a hybrid or the resonance forms.

R,S convention

A formal non-ambiguous, nomenclature system for the assignment of absolute configuration of structure to chiral atoms, using the Cahn, Ingold, and Prelog priority rules.


The study of the spatial arrangements of atoms in molecules and complexes.


Another name for configurational isomer.

Stereospecific reactions

Reactions in which the stereochemistry of reagents affects the stereochemistry of products. Different stereoisomers as reagents give different stereoisomer as products.


  1. Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Proc Natl Acad Sci 111:18084–18089CrossRefGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Nature 435:824–827CrossRefGoogle Scholar
  3. Berlage U, Schmidt J, Milkova Z, Welzel P (1987) Tetrahedron Lett 28:3095–3098CrossRefGoogle Scholar
  4. Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P (2009) Org Biomol Chem 7:3413–3420CrossRefGoogle Scholar
  5. Boyer F-D, Germain ADS, Pillot J-P, Pouvreau J-B, Chen VX, Ramos S, Stevenin A, Simier P, Delavault P, Beau J-M, Rameau C (2012) Plant Physiol 159:1524–1544CrossRefGoogle Scholar
  6. Boyer FD, de Saint Germain A, Pouvreau JB, Clave G, Pillot JP, Roux A, Rasmussen A, Depuydt S, Lauressergues D, Frei Dit Frey N, Heugebaert TS, Stevens CV, Geelen D, Goormachtig S, Rameau C (2014) Mol Plant 7:675–690CrossRefGoogle Scholar
  7. Bromhead LJ, McErlean CSP (2017) Eur J Org Chem:5712–5723Google Scholar
  8. Bromhead LJ, Smith J, McErlean CSP (2015) Aust J Chem 68:1221–1227CrossRefGoogle Scholar
  9. Brooks DW, Bevinakatti HS, Powell DR (1985) J Org Chem 50:3779–3781CrossRefGoogle Scholar
  10. Ćavar S, Zwanenburg B, Tarkowski P (2015) Phytochem Rev 14:691–711CrossRefGoogle Scholar
  11. Chen VX, Boyer F-D, Rameau C, Retailleau P, Vors J-P, Beau J-M (2010) Chem Eur J 16:13941–13945CrossRefGoogle Scholar
  12. Coggan P, Luhan PA, McPhail AT (1973) J Chem Soc Perk Trans 2:465–469CrossRefGoogle Scholar
  13. Cook CE, Whichard LP, Turner B, Wall ME (1966) Science 154:1189–1190CrossRefGoogle Scholar
  14. Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) J Am Chem Soc 94:6198–6199CrossRefGoogle Scholar
  15. Dailey OD (1987) J Org Chem 52:1984–1989CrossRefGoogle Scholar
  16. Dieckmann MC, Dakas P-Y, De Mesmaeker A (2018) J Org Chem 83:125–135CrossRefGoogle Scholar
  17. Dvorakova M, Soudek P, Vanek T (2017) J Nat Prod 80:1318–1327CrossRefGoogle Scholar
  18. Flematti GR, Scaffidi A, Waters MT, Smith SM (2016) Planta 243:1361–1373CrossRefGoogle Scholar
  19. Frischmuth K, Samson E, Kranz A, Welzel P, Meuer H, Sheldrick WS (1991) Tetrahedron 47:9793–9806CrossRefGoogle Scholar
  20. Frischmuth K, Wagner U, Samson E, Weigelt D, Koll P, Meuer H, Sheldrick WS, Welzel P (1993) Tetrahedron Asymmetry 4:351–360CrossRefGoogle Scholar
  21. Fukui K, Yamagami D, Ito S, Asami T (2017) Front Plant Sci 8:936CrossRefGoogle Scholar
  22. Hauck C, Schildknecht H (1990) J Plant Physiol 136:126–128CrossRefGoogle Scholar
  23. Hauck C, Muller S, Schildknecht H (1992) J Plant Physiol 139:474–478CrossRefGoogle Scholar
  24. Heather J, Mittal R, Sih CJ (1974) J Am Chem Soc 96:1976–1977CrossRefGoogle Scholar
  25. Heather JB, Mittal RSD, Sih CJ (1976) J Am Chem Soc 98:3661–3669CrossRefGoogle Scholar
  26. Hirayama K, Mori K (1999) Eur J Org Chem 1999:2211–2217CrossRefGoogle Scholar
  27. Kadas I, Arvai G, Miklo K, Horvath G, Toke L, Toth G, Szollosy A, Bihari M (1996) J Environ Sci Health, Part B B31:561–566CrossRefGoogle Scholar
  28. Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyema K, Uchida K, Yokota T, Nomura T, McErlean CSP, Yoneyama K (2014) Phytochemistry 103:85–88CrossRefGoogle Scholar
  29. Kisugi T, Xie X, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K (2013) Phytochemistry 87:60–64CrossRefGoogle Scholar
  30. Kitahara S, Tashiro T, Sugimoto Y, Sasaki M, Takikawa H (2011) Tetrahedron Lett 52:724–726CrossRefGoogle Scholar
  31. Kondo Y, Tadokoro E, Matsuura M, Iwasaki K, Sugimoto Y, Miyake H, Takikawa H, Sasaki M (2007) Biosci Biotechnol Biochem 71:2781–2786CrossRefGoogle Scholar
  32. Kumagai H, Fujiwara M, Kuse M, Takikawa H (2015) Biosci Biotechnol Biochem 79:1240–1245CrossRefGoogle Scholar
  33. Lace B, Prandi C (2016) Mol Plant 9:1099–1118CrossRefGoogle Scholar
  34. Lachia M, Dakas PY, De Mesmaeker A (2014) Tetrahedron Lett 55:6577–6581CrossRefGoogle Scholar
  35. Lachia M, Wolf HC, Jung PJ, Screpanti C, De Mesmaeker A (2015) Bioorg Med Chem Lett 25:2184–2188CrossRefGoogle Scholar
  36. Lombardi C, Artuso E, Grandi E, Lolli M, Spirakys F, Priola E, Prandi C (2017) Org Biomol Chem 15:8218–8231CrossRefGoogle Scholar
  37. Macalpine GA, Raphael RA, Shaw A, Taylor AW, Wild HJ (1976) J Chem Soc Perkin Trans 1:410–416CrossRefGoogle Scholar
  38. Matsui J, Yokota T, Bando M, Takeuchi Y, Mori K (1999a) Eur J Org Chem 1999:2201–2210CrossRefGoogle Scholar
  39. Matsui J, Bando M, Kido M, Takeuchi Y, Mori K (1999b) Eur J Org Chem 1999:2195–2199CrossRefGoogle Scholar
  40. Matsui J, Bando M, Kido M, Takeuchi Y, Mori K (1999c) Eur J Org Chem:2183–2194Google Scholar
  41. Matsuura H, Ohashi K, Sasako H, Tagawa N, Takano Y, Ioka Y, Nabeta K, Yoshihara T (2008) Plant Growth Regul 54:31–36CrossRefGoogle Scholar
  42. Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) Plant Physiol 139:920–934CrossRefGoogle Scholar
  43. Mori K, Matsui J (1997) Tetrahedron Lett 38:7891–7892CrossRefGoogle Scholar
  44. Mori K, Matsui J, Bando M, Kido M, Takeuchi Y (1997) Tetrahedron Lett 38:2507–2510CrossRefGoogle Scholar
  45. Mori K, Matsui J, Bando M, Kido M, Takeuchi Y (1998) Tetrahedron Lett 39:6023–6026CrossRefGoogle Scholar
  46. Morris JC, McErlean CSP (2016) Org Biomol Chem 14:1236–1238CrossRefGoogle Scholar
  47. Mwakaboko AS, Zwanenburg B (2016) Eur J Org Chem 2016:3495–3499CrossRefGoogle Scholar
  48. Nakamura H, Asami T (2014) Front Plant Sci 5:623CrossRefGoogle Scholar
  49. Oancea F, Georgescu E, Matusova R, Georgescu F, Nicolescu A, Raut I, Jecu ML, Vladulescu MC, Vladulescu L, Deleanu C (2017) Molecules 22.
  50. Prandi C, Ghigo G, Occhiato EG, Scarpi D, Begliomini S, Lace B, Alberto G, Artuso E, Blangetti M (2014) Org Biomol Chem 12:2960–2968CrossRefGoogle Scholar
  51. Reizelman A, Scheren M, Nefkens GHL, Zwanenburg B (2000) Synthesis-Stuttgart 13:1944–1951CrossRefGoogle Scholar
  52. Samson E, Frischmuth K, Berlage U, Heinz U, Hobert K, Welzel P (1991) Tetrahedron 47:1411–1416CrossRefGoogle Scholar
  53. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Plant Physiol 165:1221–1232CrossRefGoogle Scholar
  54. Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Proc Natl Acad Sci 111:1640–1645CrossRefGoogle Scholar
  55. Sugimoto Y, Wigchert SCM, Thuring J, Zwanenburg B (1997) Tetrahedron Lett 38:2321–2324CrossRefGoogle Scholar
  56. Sugimoto Y, Wigchert SCM, Thuring J, Zwanenburg B (1998) J Org Chem 63:1259–1267CrossRefGoogle Scholar
  57. Takahashi A, Ogura Y, Enomoto M, Kuwahara S (2016) Tetrahedron 72:6634–6639CrossRefGoogle Scholar
  58. Takikawa H, Jikumaru S, Sugimoto Y, Xie XN, Yoneyama K, Sasaki M (2009) Tetrahedron Lett 50:4549–4551CrossRefGoogle Scholar
  59. Thuring JWJF, Nefkens GHL, Wegman MA, Klunder AJH, Zwanenburg B (1996) J Org Chem 61:6931–6935CrossRefGoogle Scholar
  60. Thuring J, Nefkens GHL, Zwanenburg B (1997) J Agric Food Chem 45:1409–1414CrossRefGoogle Scholar
  61. Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011) J Agric Food Chem 59:10485–10490CrossRefGoogle Scholar
  62. Welzel P, Rohrig S, Milkova Z (1999) Chem Commun:2017–2022Google Scholar
  63. Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) J Agric Food Chem 47:1705–1710CrossRefGoogle Scholar
  64. Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) J Agric Food Chem 55:8067–8072CrossRefGoogle Scholar
  65. Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008a) Tetrahedron Lett 49:2066–2068CrossRefGoogle Scholar
  66. Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K (2008b) Phytochemistry 69:427–431CrossRefGoogle Scholar
  67. Yasui M, Ota R, Tsukano C, Takemoto Y (2017) Nat Commun 8:674CrossRefGoogle Scholar
  68. Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Phytochemistry 49:1967–1973CrossRefGoogle Scholar
  69. Zwanenburg B, Pospisil T (2013) Mol Plant 6:38–62CrossRefGoogle Scholar
  70. Zwanenburg B, Nayak SK, Charnikhova TV, Bouwmeester HJ (2013) Bioorg Med Chem Lett 23:5182–5186CrossRefGoogle Scholar
  71. Zwanenburg B, Mwakaboko AS, Kannan C (2016a) Pest Manag Sci 72:2016–2025CrossRefGoogle Scholar
  72. Zwanenburg B, Regeling H, Van Tilburg-Joukema CW, Van Oss B, Molenveld P, De Gelder R, Tinnemans P (2016b) Eur J Org Chem 2016:2163–2169CrossRefGoogle Scholar
  73. Zwanenburg B, Pospíšil T, Ćavar Zeljković S (2016c) Planta 243:1311–1326CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TurinTurinItaly
  2. 2.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations