Skip to main content

Unconditionally Secure Distributed Oblivious Polynomial Evaluation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11396))

Abstract

Oblivious polynomial evaluation (OPE) was first introduced by Naor and Pinkas in 1999. An OPE protocol involves a receiver, R who holds a value, \(\alpha \) and a sender, S with a private polynomial, f(x). OPE allows R to compute \(f(\alpha )\) without revealing either \(\alpha \) or f(x). Since its inception, OPE has been established as an important building block in many distributed applications.

In this article we investigate a method of achieving unconditionally secure distributed OPE (DOPE) in which the function of the sender is distributed amongst a set of n servers. Specifically, we introduce a model for DOPE based on the model for distributed oblivious transfer (DOT) described by Blundo et al. in 2002. We then describe a protocol that achieves the security defined by our model.

Our DOPE protocol is efficient and achieves a high level of security. Furthermore, our proposed protocol can also be used as a DOT protocol with little to no modification.

L. Cianciullo—This research is supported by an Australian Government Research Training Program (RTP) Scholarship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient distributed oblivious transfer. J. Comput. Syst. Sci. 78(4), 1142–1157 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988. ACM, New York (1988)

    Google Scholar 

  3. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_19

    Chapter  Google Scholar 

  4. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.: On unconditionally secure distributed oblivious transfer. J. Cryptol. 20(3), 323–373 (2007)

    Article  MathSciNet  Google Scholar 

  5. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New results on unconditionally secure distributed oblivious transfer. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_19

    Chapter  MATH  Google Scholar 

  6. Corniaux, C.L.F., Ghodosi, H.: An entropy-based demonstration of the security of Shamir’s secret sharing scheme. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol. 1, pp. 46–48, April 2014

    Google Scholar 

  7. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_22

    Chapter  Google Scholar 

  8. Cheong, K.Y., Koshiba, T., Nishiyama, S.: Strengthening the security of distributed oblivious transfer. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 377–388. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1_26

    Chapter  MATH  Google Scholar 

  9. Corniaux, C.L.F., Ghodosi, H.: A verifiable distributed oblivious transfer protocol. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 444–450. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22497-3_33

    Chapter  Google Scholar 

  10. Corniaux, C.L.F., Ghodosi, H.: An information-theoretically secure threshold distributed oblivious transfer protocol. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 184–201. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5_14

    Chapter  MATH  Google Scholar 

  11. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  12. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 2263–2276. ACM, New York (2017)

    Google Scholar 

  13. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22

    Chapter  Google Scholar 

  14. Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Winter, A.: Information theoretically secure oblivious polynomial evaluation: model, bounds, and constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 62–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_6

    Chapter  MATH  Google Scholar 

  15. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_4

    Chapter  Google Scholar 

  16. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–64 (1989)

    Article  MathSciNet  Google Scholar 

  17. Li, H.D., Yang, X., Feng, D.G., Li, B.: Distributed oblivious function evaluation and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004)

    Article  MathSciNet  Google Scholar 

  18. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_3

    Chapter  Google Scholar 

  19. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)

    Article  MathSciNet  Google Scholar 

  20. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC 1999, pp. 245–254. ACM, New York (1999)

    Google Scholar 

  21. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_16

    Chapter  Google Scholar 

  22. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure distributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36231-2_31

    Chapter  Google Scholar 

  23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  24. Tonicelli, R., et al.: Information-theoretically secure oblivious polynomial evaluation in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–84 (2015)

    Article  Google Scholar 

  25. Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its applications. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 222–230. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Cianciullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cianciullo, L., Ghodosi, H. (2019). Unconditionally Secure Distributed Oblivious Polynomial Evaluation. In: Lee, K. (eds) Information Security and Cryptology – ICISC 2018. ICISC 2018. Lecture Notes in Computer Science(), vol 11396. Springer, Cham. https://doi.org/10.1007/978-3-030-12146-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12146-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12145-7

  • Online ISBN: 978-3-030-12146-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics