Skip to main content

Biodiversity of Zooplankton in Polish Small Water Bodies

  • Chapter
  • First Online:
Polish River Basins and Lakes – Part II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 87))

Abstract

Although ponds located in a low-transformed landscape harbour higher biodiversity than ponds in areas with a large impact of anthropopression, both types of water bodies can contribute to the enrichment of fauna on local and regional scales. This review presents aspects of pond zooplankton diversity with reference to the occurrence of species, common and rare, and significant drivers of their distribution. The results of various studies carried out on small water bodies in Poland revealed a great level of zooplankton diversity, which points directly to a high variation of the origin of types of ponds. Land use within the direct catchment area influences the creation of zooplankton diversity, although a greater impact is connected with various habitats, particularly the open water zone and macrophyte-dominated areas. The complex architecture of elodeids is responsible for the highest zooplankton diversity with many rare species, offering a great number of available ecological niches for littoral animals and profitable anti-predator conditions for planktonic species. Therefore, one should strive to maintain or even increase the complexity of aquatic vegetation within even small-surfaced ponds. The generally high share of rare species found in ponds underlines their high ecological value but, at the same time, a lack of thorough studies. The most common rotifers found in Polish ponds were Keratella cochlearis, Anuraeopsis fissa, Polyarthra vulgaris and Keratella quadrata as well as Chydorus sphaericus, Bosmina longirostris, Ceriodaphnia quadrangula and Eubosmina coregoni among crustaceans. This reflects the wide ecological valence of these species and suggests that most ponds are eutrophic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds and impoundments. Limnol Oceanogr 51:2388–2397

    Google Scholar 

  2. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Google Scholar 

  3. Biggs J, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793:3–39

    Google Scholar 

  4. Stendera S, Adrian R, Bonada N, Canedo-Arguelles M, Hugueny B, Januschke K, Pletterbauer F, Hering D (2012) Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696:1–28

    Google Scholar 

  5. Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597:1–6

    Google Scholar 

  6. Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne J-B (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv 15:535–540

    Google Scholar 

  7. Kuczyńska-Kippen N, Pronin M (2018) Diversity and zooplankton species associated with certain hydroperiods and fish state in field ponds. Ecol Indic 90:171–178

    Google Scholar 

  8. Hill MJ, Biggs J, Thornhill I, Briers RA, Ledger M, Gledhill DG, Wood PJ, Hassall C (2018) Community heterogeneity of aquatic macroinvertebrates in urban ponds at a multi-city scale. Landsc Ecol 33:389–405

    Google Scholar 

  9. Dumont HJ, Segers H (1992) Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 341:125–132

    Google Scholar 

  10. Kuczyńska-Kippen N (ed) (2009) Funkcjonowanie zbiorowisk planktonu w zróżnicowanych siedliskowo drobnych zbiornikach wodnych Wielkopolski. Bonami, Poznań, p 505

    Google Scholar 

  11. Bielańska-Grajner I, Ejsmont-Karabin J, Radwan S (2015) Rotifers Rotifera Monogononta. Freshwater Fauna of Poland, vol 32. Wydawnictwo Uniwersytetu Łódzkiego, Łódź, p 580

    Google Scholar 

  12. Karabin A (1985) Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication I. Structural and quantitative features. Ekol Pol 33:567–616

    Google Scholar 

  13. Rybak JI, Błędzki LA (2010) Słodkowodne skorupiaki planktonowe. Klucz do oznaczania gatunków. Wydawnictwa Uniwersytetu Warszawskiego, Wydawca, p 366

    Google Scholar 

  14. Jurasz W (2005) Wioślarki (Cladocera) zbiorników śródpolnych i jezior południowych Kujaw. Studium faunistyczno-ekologiczne [Cladocerans (Cladocera) of mid-field ponds and lakes of southern Kujawy. Fauna and ecological study]. Wyd. UŁ, Łódź, p 123

    Google Scholar 

  15. Pociecha A, Wilk-Woźniak E (2006) The life strategy and dynamics of selected species of phyto- and zooplankton in a dam reservoir during “wet” and “dry” years. Pol J Ecol 54:29–38

    Google Scholar 

  16. Goździejewska A, Tucholski S (2011) Zooplankton of fish culture ponds periodically fed with treated wastewater. Pol J Environ Stud 20:67–79

    Google Scholar 

  17. Skowronek E, Cudak A, Bielańska-Grajner I (2012) Effect of recreation on the species richness and diversity of rotifers in ponds. Int J Water Res Prot 4:795–799

    Google Scholar 

  18. Pejler B (1962) On the variation of the rotifer Keratella cochlearis (Gosse). Zool Bidr Upps 35:1–17

    Google Scholar 

  19. Czerniawski R, Popko R, Krepski T, Domagała J (2013) Invertebrates of three small ponds located in stream-pond system. Teka Kom Ochr Kszt Prod Przyr 10:14–22

    Google Scholar 

  20. Kuczyńska-Kippen N (2008) Spatial distribution of zooplankton communities between the Sphagnum mat and open water in a dystrophic lake. Pol J Ecol 56:57–64

    Google Scholar 

  21. Lokko K, Virro T (2014) The structure of psammic rotifer communities in two boreal lakes with different trophic conditions: Lake Võrtsjärv and Lake Saadjärv (Estonia). Oceanol Hydrobiol Stud 43:49–55

    CAS  Google Scholar 

  22. Iakovenko NS, Smykla J, Convey P, Kasparova EI, Kozeretska A, Trokhymets V, Dykyy I, Plewka M, Devetter M, Duris Z, Janko K (2015) Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia 761:5–43

    Google Scholar 

  23. Czerniawski R, Sługocki Ł, Kowalska-Góralska M (2016) Diurnal changes of zooplankton community reduction rate at lake outlets and related environmental factors. PLoS One 11(7):e0158837

    Google Scholar 

  24. Kuczyńska-Kippen N (2018) The use of bdelloids in reference to rotifer biocoenotic indices as an indicator of the ecological state of small field water bodies: the effect of macrophytes, shading and trophic state of water. Ecol Indic 89:576–583

    Google Scholar 

  25. Kuczyńska-Kippen N, Joniak T (2016) Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 774:39–51

    Google Scholar 

  26. Dziuba MK, Cerbin S, Wejnerowski Ł (2013) Cladocera and Copepoda of the shallow eutrophic lake in Natura2000 area in western Poland. Pakistan J Zool 45:653–659

    Google Scholar 

  27. Celewicz-Gołdyn S, Kuczyńska-Kippen N (2017) Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS One 12(5):e0177317

    Google Scholar 

  28. Kosiba J, Wilk-Woźniak E, Krztoń W, Strzesak M, Pociecha A, Walusiak E, Pudaś K, Szarek-Gwiazda E (2017) What underpins the trophic networks of the plankton in shallow oxbow lakes? Microb Ecol 73:17–28

    CAS  Google Scholar 

  29. Havens KE (1991) Summer zooplankton dynamics in the limnetic and littoral zones of a humic acid lake. Hydrobiologia 215:21–29

    Google Scholar 

  30. Adamczuk M (2016) Past, present, and future roles of small cladoceran Bosmina longirostris (O.F. Müller, 1785) in aquatic ecosystems. Hydrobiologia 767:1–11

    CAS  Google Scholar 

  31. Dembowska EA, Napiórkowski P (2015) A case study of the planktonic communities in two hydrologically different oxbow lakes, Vistula River, Central Poland. J Limnol 74:346–357

    Google Scholar 

  32. Davies BR, Biggs J, Williams PJ, Lee JT, Thompson S (2008) A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597:7–17

    Google Scholar 

  33. Brzęk G (1948) Studium limnologiczne nad zbiornikami wodnymi Wielkopolskiego Parku Narodowego pod Poznaniem [Limnological study on water bodies of the Wielkopolski National Park near Poznań]. Praca monograficzna nad Przyrodą Wielkopolskiego Parku Narodowego pod Poznaniem. Pr Kom Biol PTPN 2, 2

    Google Scholar 

  34. Kamiński KZ (1975) Drugie stanowisko w Polsce Simocephalus lusaticus Herr (Cladocera, Daphniidae) [The second locality in Poland of Simocephalus lusaticus Herr (Cladocera, Daphniidae)]. Acta Hydrobiol 17:89–92

    Google Scholar 

  35. Jurasz W (2003) Fauna Cladocera Polski - aktualny stan wiedzy [Cladocera fauna of Poland - the present state of knowledge]. Przeg Zool 47:7–17

    Google Scholar 

  36. Kuczyńska-Kippen N, Wiśniewska M (2011) Environmental predictors of rotifer community structure in two types of small water bodies. Int Rev Hydrobiol 96:397–404

    Google Scholar 

  37. Karpowicz M (2017) Biodiversity of microcrustaceans (Cladocera, Copepoda) in a lowland river ecosystem. J Limnol 76:15–22

    Google Scholar 

  38. Jurasz W (1992) Wioślarki (Cladocera) Roztocza Środkowego [The water-fleas (Cladocera) of the Central Roztocze Upland]. Fragm Faun 35:301–310

    Google Scholar 

  39. Bielańska-Grajner I, Cudak A (2014) Effects of salinity on species diversity of rotifers in anthropogenic water bodies. Pol J Environ Stud 23:27–34

    Google Scholar 

  40. Kuczyńska-Kippen N, Basińska AM, Świdnicki K (2013) Specificity of zooplankton distribution in meteorite crater ponds (Morasko, Poland). Knowl Manag Aquat Ecosyst 409:08

    Google Scholar 

  41. Świdnicki K, Basińska AM, Pronin M, Kuczyńska-Kippen N (2016) Meteorite crater ponds as source of high zooplankton biodiversity. Biologia 71:1361–1368

    Google Scholar 

  42. Kolicka M, Dziuba MK, Zawierucha K, Kuczyńska-Kippen N, Kotwicki L (2015) Palm house – biodiversity hotspot or risk of invasion? Aquatic invertebrates: the special case of Monogononta (Rotifera) under greenhouse conditions. Biologia 70:94–103

    Google Scholar 

  43. Bielańska-Grajner I, Sowa A, Pasamonik A, Pielok K, Kolek L (2017) A new record of the rare rotifer species Filinia opoliensis in southern Poland. Chrońmy Przyr Ojcz 73:151–154

    Google Scholar 

  44. Ejsmont-Karabin J (2014) Rotifer invasion? On appearance and abundance of tropical species in lakes of North-Eastern Poland. Pol J Ecol 62:821–827

    Google Scholar 

  45. Ejsmont-Karabin J (2011) Does invasion of Vallisneria spiralis L. promote appearance of rare and new rotifer (Rotifera) species in littoral of the lakes heated by power station (Konin lakes, W. Poland)? Pol J Ecol 59:201–207

    Google Scholar 

  46. Ejsmont-Karabin J, Hutorowicz A (2011) Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol Hydrobiol Stud 40:71–76

    Google Scholar 

  47. Basińska AM, Świdnicki K, Kuczyńska-Kippen N (2014a) Effect of surrounding trees and dry rush presence on spring zooplankton community in an urban pond complex. Ann Limnol 50:315–323

    Google Scholar 

  48. Brysiewicz A, Sługocki Ł, Wesołowski P, Czerniawski R (2017) Zooplankton community structure in small ponds in relation to fish community and environmental factors. Appl Ecol Environ Res 15:929–941

    Google Scholar 

  49. Kuczyńska-Kippen N, Joniak T (2010) The impact of water chemistry on zooplankton occurrence in two types (field versus forest) of small water bodies. Int Rev Hydrobiol 95:130–141

    Google Scholar 

  50. Basińska A, Kuczyńska-Kippen N (2009) Differentiated macrophyte types as a habitat for rotifers in small mid-forest water bodies. Biologia 64:1100–1107

    Google Scholar 

  51. Demetraki-Paleolog A, Tarkowska-Kukuryk M (2010) Structure of rotifer communities of restored small peat-bog reservoirs of Poleski National Park. Arch Environ Prot 36:21–30

    Google Scholar 

  52. Demetraki-Paleolog A (2014) Studies on sustainability of planktonic rotifer assemblages in select national park ponds and wetland reservoirs. Pol J Environ Stud 23:51–56

    CAS  Google Scholar 

  53. Klimaszyk P, Kuczyńska-Kippen N (2005) Peat-bog pool (Wielkopolski National Park) as a habitat of specific communities of zooplankton. Acta Agrophysica 7:375–382

    Google Scholar 

  54. Kuczyńska-Kippen N, Nagengast B, Bartkowska E, Horbajczuk L (2004) Differentiation of the structure of zooplankton communities in stands of water and rush vegetation of post-exploitation small water bodies in Poznań. Teka Kom Ochr Kszt Prod Przyr 1:122–129

    Google Scholar 

  55. Żmudziński L, Kornijów R, Bolałek J, Górniak A, Olańczuk-Meyman K, Pęczalska A, Korzeniewski K (2002) Słownik hydrobiologiczny, terminy, pojęcia, interpretacje. PWN, Warszawa, p 287

    Google Scholar 

  56. Dembowska E, Napiórkowski P (2012) Dlaczego warto chronić starorzecza? [Why do we have to protect old river beds?]. Kosmos 61:341–349

    Google Scholar 

  57. Joniak T, Kuczyńska-Kippen N (2016) Habitat features and zooplankton community structure of oxbows in the limnophase: reference to transitional phase between flooding and stabilization. Limnetica 35:37–48

    Google Scholar 

  58. Kuczyńska-Kippen N, Basińska AM (2014) Habitat as the most important influencing factor for the rotifer community structure at landscape level. Int Rev Hydrobiol 99:58–64

    Google Scholar 

  59. Klimowicz H (1967) Rotifers of astatic waters. Part II. Rotifers of small water bodies from the Mikołajki region. Pol Arch Hydrobiol 14:91–110

    Google Scholar 

  60. Yevdokimov NA, Yermokhin MV (2009) Zooplankton crustaceans of ephemeral waterbodies on the territory of various natural zones in Saratov Oblast. Inland Water Biol 2:59–66

    Google Scholar 

  61. Klimowicz H (1970) Wrotki (Rotatoria) wód astatycznych [Rotifers (Rotatoria) of astatic waters]. Zesz Nauk Inst Gosp Komunalnej Warszawa 30:253

    Google Scholar 

  62. Dodson SJ, Everhast WR, Jandl AK, Krauskopf SJ (2007) Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia 579:393–399

    Google Scholar 

  63. Declerck S, De Bie T, Ercken T, Hampel H, Schrijvers S, Van Wichelen J, Gillard V, Mandiki R, Losson B, Bauwens D, Keijers S, Vyverman W, Goddeeris B, De Meester L, Brendonck L, Martens K (2006) Ecological characteristics of small farm land ponds: 1 associations with land-use practices at multiple spatial scales. Biol Conserv 131:523–532

    Google Scholar 

  64. Pawlikiewicz P, Jurasz W (2017) Ecological drivers of cladoceran diversity in the central European city (Łódź, Poland): effects of urbanisation and size of the waterbody. Ann Zool Fennici 54:315–333

    Google Scholar 

  65. Ejsmont-Karabin J, Kuczyńska-Kippen N (2001) Urban rotifers - structure and densities of rotifer communities in water bodies of the Poznań agglomeration (Western Poland). Hydrobiologia 446(447):165–171

    Google Scholar 

  66. Basińska AM, Antczak M, Świdnicki K, Jassey VEJ, Kuczyńska-Kippen N (2014b) Habitat type as strongest predictor of the body size distribution of Chydorus sphaericus (O. F. Muller) in small water bodies. Int Rev Hydrobiol 99:382–392

    Google Scholar 

  67. Basińska A, Kuczyńska-Kippen N, Świdnicki K (2010) The body size distribution of Filinia longiseta (Ehrenberg) in different types of small water bodies in the Wielkopolska region. Limnetica 29/1:171–182

    Google Scholar 

  68. Pinel-Alloul B, Ghadouani A (2007) Spatial heterogeneity of planktonic microorganisms in aquatic systems. In: Franklin R, Mills A (eds) The spatial distribution of microbes in the environment. Springer, Dordrecht, pp 203–310

    Google Scholar 

  69. Nagengast B, Kuczyńska-Kippen N (2015) Macrophyte biometric features as an indicator of the trophic status of small water bodies. Oceanol Hydrobiol Stud 44:38–50

    CAS  Google Scholar 

  70. Pasztaleniec A, Karpowicz M, Strzałek M (2013) The influence of habitat conditions on the plankton in the Białe oxbow lake (Nadbużański Landscape Park). Limnol Rev 13:43–50

    CAS  Google Scholar 

  71. Joniak T, Kuczyńska-Kippen N, Gąbka M (2017) Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies. Hydrobiologia 793:121–133

    CAS  Google Scholar 

  72. Pieńkowski P (2004) Disappearance of ponds in landscape of Northern Europe as an effect of anthropogenic influence and global climate change. Pol J Environ Stud 13:192–196

    Google Scholar 

  73. Jeffries M (2012) Ponds and the importance of their history: an audit of pond numbers, turnover and the relationship between the origins of ponds and their contemporary plant communities in south-east Northumberland, UK. Hydrobiologia 689:11–21

    Google Scholar 

  74. Waldon B (2012) Natural value and endangerment of small water reservoirs in the Krajeńskie Lakeland (North-West Poland). Limnologica 42:320–327

    Google Scholar 

  75. Golus W, Bajkiewicz-Grabowska E (2017) Water circulation in the moraine ponds of northern Poland. Hydrobiologia 793:55–65

    CAS  Google Scholar 

  76. Pociecha A, Wilk-Woźniak E, Mróz W, Bielańska-Grajner I, Gadzinowska J, Walusiak E (2015) Biodiversity of rotifers in urban water reservoirs of southern Poland. Oceanol Hydrobiol Stud 44:335–342

    CAS  Google Scholar 

  77. Koperski P (2010) Urban environments as habitats for rare aquatic species: the case of leeches (Euhirudinea, Clitellata) in Warsaw freshwaters. Limnologica 40:233–240

    Google Scholar 

  78. Hassall C (2014) The ecology and biodiversity of urban ponds. WIREs Water 1:187–206

    Google Scholar 

  79. Hill MJ, Wood PJ, Mathers KL (2015) The aquatic macroinvertebrate biodiversity of urban ponds in a medium-sized European town (Loughborough, UK). Hydrobiologia 760:225–238

    CAS  Google Scholar 

  80. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Kuczyńska-Kippen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuczyńska-Kippen, N. (2020). Biodiversity of Zooplankton in Polish Small Water Bodies. In: Korzeniewska, E., Harnisz, M. (eds) Polish River Basins and Lakes – Part II. The Handbook of Environmental Chemistry, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-030-12139-6_3

Download citation

Publish with us

Policies and ethics