Grey Wolf Optimizer: Theory, Literature Review, and Application in Computational Fluid Dynamics Problems

  • Seyedali MirjaliliEmail author
  • Ibrahim Aljarah
  • Majdi Mafarja
  • Ali Asghar Heidari
  • Hossam Faris
Part of the Studies in Computational Intelligence book series (SCI, volume 811)


This chapter first discusses inspirations, methematicam models, and an in-depth literature of the recently proposed Grey Wolf Optimizer (GWO). Then, several experiments are conducted to analyze and benchmark the performance of different variants and improvements of this algorithm. The chapter also investigates the application of the GWO variants in finding an optimal design for a ship propeller.


  1. 1.
    Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRefGoogle Scholar
  2. 2.
    E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381.CrossRefGoogle Scholar
  3. 3.
    Panwar, L. K., Reddy, S., Verma, A., Panigrahi, B. K., & Kumar, R. (2018). Binary Grey Wolf Optimizer for large scale unit commitment problem. Swarm and Evolutionary Computation, 38, 251–266.CrossRefGoogle Scholar
  4. 4.
    Jayabarathi, T., Raghunathan, T., Adarsh, B. R., & Suganthan, P. N. (2016). Economic dispatch using hybrid grey wolf optimizer. Energy, 111, 630–641.CrossRefGoogle Scholar
  5. 5.
    Srikanth, K., Panwar, L. K., Panigrahi, B. K., Herrera-Viedma, E., Sangaiah, A. K., & Wang, G. G. (2017). Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Computers & Electrical Engineering.Google Scholar
  6. 6.
    Sujatha, K., & Punithavathani, D. S. (2018). Optimized ensemble decision-based multi-focus imagefusion using binary genetic Grey-Wolf optimizer in camera sensor networks. Multimedia Tools and Applications, 77(2), 1735–1759.CrossRefGoogle Scholar
  7. 7.
    C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 99, 161–176.CrossRefGoogle Scholar
  8. 8.
    Wang, S., Hua, G., Hao, G., & Xie, C. (2017). A comparison of different transfer functions for binary version of grey wolf optimiser. International Journal of Wireless and Mobile Computing, 13(4), 261–269.CrossRefGoogle Scholar
  9. 9.
    L., Sun, L., Guo, J., Qi, J., Xu, B., & Li, S. (2017). Modified discrete grey wolf optimizer algorithm for multilevel image thresholding. Computational intelligence and neuroscience.Google Scholar
  10. 10.
    Seth, J. K., & Chandra, S. (2016, March). Intrusion detection based on key feature selection using binary GWO. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 3735–3740). IEEE.Google Scholar
  11. 11.
    Manikandan, S. P., Manimegalai, R., & Hariharan, M. (2016). Gene Selection from microarray data using binary grey wolf algorithm for classifying acute leukemia. Current Signal Transduction Therapy, 11(2), 76–83.CrossRefGoogle Scholar
  12. 12.
    Li, L., Sun, L., Kang, W., Guo, J., Han, C., & Li, S. (2016). Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation. IEEE Access, 4, 6438–6450.CrossRefGoogle Scholar
  13. 13.
    Reddy, S., Panwar, L. K., Panigrahi, B. K., & Kumar, R. (2016, December). Optimal scheduling of uncertain wind energy and demand response in unit commitment using binary grey wolf optimizer (BGWO). In 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON) (pp. 344–349). IEEE.Google Scholar
  14. 14.
    Kohli, M., & Arora, S. (2017). Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering.Google Scholar
  15. 15.
    Teeparthi, K., & Kumar, D. V. (2016, December). Grey wolf optimization algorithm based dynamic security constrained optimal power flow. In Power Systems Conference (NPSC), 2016 National (pp. 1–6). IEEE.Google Scholar
  16. 16.
    Gupta, S., & Deep, K. Random walk grey wolf optimizer for constrained engineering optimization problems. Computational Intelligence.Google Scholar
  17. 17.
    Yang, J. C., & Long, W. (2016). Improved grey wolf optimization algorithm for constrained mechanical design problems. Applied Mechanics and Materials, 851, 553–558). Trans Tech Publications.Google Scholar
  18. 18.
    Joshi, H., & Arora, S. (2017). Enhanced grey wolf optimisation algorithm for constrained optimisation problems. International Journal of Swarm Intelligence, 3(2–3), 126–151.CrossRefGoogle Scholar
  19. 19.
    Prakasam, S., Venkatachalam, M., & Saroja, M. (2016). Grey Wolf optimizer for constrained hardware-software codesign partitioning. Programmable Device Circuits and Systems, 8(8), 239–243.Google Scholar
  20. 20.
    Kumar, G., & Ranga, V. (2017, August). Meta-heuristic solution for relay nodes placement in constrained environment. In 2017 Tenth International Conference on Contemporary Computing (IC3) (pp. 1–6). IEEE.Google Scholar
  21. 21.
    Long, W., Liang, X., Cai, S., Jiao, J., & Zhang, W. (2017). A modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problems. Neural Computing and Applications, 28(1), 421–438.CrossRefGoogle Scholar
  22. 22.
    Sreenu, K., & Malempati, S. (2017). MFGMTS: Epsilon constraint-based modified fractional grey wolf optimizer for multi-objective task scheduling in cloud computing. IETE Journal of Research, 1–15.Google Scholar
  23. 23.
    Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106–119.CrossRefGoogle Scholar
  24. 24.
    Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.CrossRefGoogle Scholar
  25. 25.
    Lu, C., Gao, L., Li, X., & Xiao, S. (2017). A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Engineering Applications of Artificial Intelligence, 57, 61–79.CrossRefGoogle Scholar
  26. 26.
    Yang, Z., & Liu, C. (2018). A hybrid multi-objective gray wolf optimization algorithm for a fuzzy blocking flow shop scheduling problem. Advances in Mechanical Engineering, 10(3), 1687814018765535.Google Scholar
  27. 27.
    Jangir, P., & Jangir, N. (2018). A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power. Engineering Applications of Artificial Intelligence, 72, 449–467.CrossRefGoogle Scholar
  28. 28.
    Sahoo, A., & Chandra, S. (2017). Multi-objective Grey Wolf Optimizer for improved cervix lesion classification. Applied Soft Computing, 52, 64–80.CrossRefGoogle Scholar
  29. 29.
    Lu, C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 99, 161–176.CrossRefGoogle Scholar
  30. 30.
    Kamboj, V. K. (2016). A novel hybrid PSOGWO approach for unit commitment problem. Neural Computing and Applications, 27(6), 1643–1655.CrossRefGoogle Scholar
  31. 31.
    Singh, N., & Singh, S. B. (2017). Hybrid algorithm of particle swarm optimization and Grey Wolf optimizer for improving convergence performance. Journal of Applied Mathematics.Google Scholar
  32. 32.
    Chopra, N., Kumar, G., & Mehta, S. (2016). Hybrid GWO-PSO algorithm for solving convex economic load dispatch problem. International Journal Research Advanced Technology, 4(6), 37–41.Google Scholar
  33. 33.
    Eid, H. F., & Abraham, A. (2018). Plant species identification using leaf biometrics and swarm optimization: A hybrid PSO, GWO, SVM model. International Journal of Hybrid Intelligent Systems, (Preprint), 1–11.Google Scholar
  34. 34.
    Jain, U., Tiwari, R., & Godfrey, W. W. (2018). Odor source localization by concatenating particle swarm optimization and Grey Wolf optimizer. In Advanced Computational and Communication Paradigms (pp. 145–153). Springer, Singapore.Google Scholar
  35. 35.
    Tawhid, M. A., & Ali, A. F. (2017). A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memetic Computing, 9(4), 347–359.CrossRefGoogle Scholar
  36. 36.
    Ab Rashid, M. F. F. (2017). A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem. Assembly Automation, 37(2), 238–248.CrossRefGoogle Scholar
  37. 37.
    Abdelazeem, M. (2018, January). A hybrid Grey Wolf-bat algorithm for global optimization. In The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018) (Vol. 723, p. 3). Springer.Google Scholar
  38. 38.
    ElGayyar, M., Emary, E., Sweilam, N. H., & Abdelazeem, M. (2018, February). A hybrid Grey Wolf-bat algorithm for global optimization. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 3–12). Springer, Cham.CrossRefGoogle Scholar
  39. 39.
    Pan, J. S., Dao, T. K., & Chu, S. C. (2017, November). A novel hybrid GWO-FPA algorithm for optimization applications. In International Conference on Smart Vehicular Technology, Transportation, Communication and Applications (pp. 274–281). Springer, Cham.Google Scholar
  40. 40.
    Debnath, M. K., Mallick, R. K., & Sahu, B. K. (2017). Application of hybrid differential evolution Grey Wolf optimization algorithm for automatic generation control of a multi-source interconnected power system using optimal fuzzy PID controller. Electric Power Components and Systems, 45(19), 2104–2117.CrossRefGoogle Scholar
  41. 41.
    Singh, N., & Singh, S. B. (2017). A novel hybrid GWO-SCA approach for optimization problems. Engineering Science and Technology, an International Journal.Google Scholar
  42. 42.
    Zhang, X., Kang, Q., Cheng, J., & Wang, X. (2018). A novel hybrid algorithm based on Biogeography-based optimization and Grey Wolf optimizer. Applied Soft Computing, 67, 197–214.CrossRefGoogle Scholar
  43. 43.
    Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.CrossRefGoogle Scholar
  44. 44.
    Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds number aerodynamics (pp. 1–12). Springer, Berlin, Heidelberg.Google Scholar
  45. 45.
    Carlton, J. (2012). Marine propellers and propulsion. Butterworth-Heinemann.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Seyedali Mirjalili
    • 1
    Email author
  • Ibrahim Aljarah
    • 2
  • Majdi Mafarja
    • 3
  • Ali Asghar Heidari
    • 4
  • Hossam Faris
    • 2
  1. 1.Institute of Integrated and Intelligent Systems, Griffith University, NathanBrisbaneAustralia
  2. 2.King Abdullah II School for Information Technology, The University of JordanAmmanJordan
  3. 3.Department of Computer Science, Faculty of Engineering and TechnologyBirzeit UniversityBirzeitPalestine
  4. 4.School of Surveying and Geospatial EngineeringUniversity of TehranTehranIran

Personalised recommendations