Ant Colony Optimizer: Theory, Literature Review, and Application in AUV Path Planning

  • Seyedali MirjaliliEmail author
  • Jin Song Dong
  • Andrew Lewis
Part of the Studies in Computational Intelligence book series (SCI, volume 811)


This chapter starts with the inspiration and main mechanisms of one of the most well-regarded combinatorial optimization algorithms called Ant Colony Optimizer (ACO). This algorithm is then employed to find the optimal path for an AUV. In fact, the problem investigated is a real-world application of the Traveling Salesman Problem (TSP).


  1. 1.
    Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, 1999 CEC 99 (Vol. 2, pp. 1470–1477). IEEE.Google Scholar
  2. 2.
    Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of Machine Learning (pp. 36–39). Springer, Boston, MA.Google Scholar
  3. 3.
    Grass, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la thorie de la stigmergie: Essai d’interprtation du comportement des termites constructeurs. Insectes sociaux, 6(1), 41–80.CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000). Ant algorithms and stigmergy. Future Generation Computer Systems, 16(8), 851–871.CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29–41.CrossRefGoogle Scholar
  6. 6.
    Stützle, T., & Hoos, H. H. (1996). Improving the ant system: A detailed report on the MAXMIN Ant System. FG Intellektik, FB Informatik, TU Darmstadt, Germany, Tech. Rep. AIDA9612.Google Scholar
  7. 7.
    Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.CrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: Algorithms and complexity. Courier Corporation.Google Scholar
  9. 9.
    Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and advances. In Handbook of metaheuristics (pp. 250–285). Springer, Boston, MA.Google Scholar
  10. 10.
    Stützle, T. (2009, April). Ant colony optimization. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 2). Springer, Berlin, Heidelberg.Google Scholar
  11. 11.
    Stützle, T., Lpez-Ibnez, M., Pellegrini, P., Maur, M., De Oca, M. M., Birattari, M., & Dorigo, M. (2011). Parameter adaptation in ant colony optimization. In Autonomous Search (pp. 191–215). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  12. 12.
    Randall, M., & Lewis, A. (2002). A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 62(9), 1421–1432.CrossRefGoogle Scholar
  13. 13.
    Stützle, T., & Hoos, H. H. (2000). MAXMIN ant system. Future Generation Computer Systems, 16(8), 889–914.CrossRefGoogle Scholar
  14. 14.
    Shahzad, F., Baig, A. R., Masood, S., Kamran, M., & Naveed, N. (2009). Opposition-based particle swarm optimization with velocity clamping (OVCPSO). In Advances in Computational Intelligence (pp. 339–348). Springer, Berlin, Heidelberg.Google Scholar
  15. 15.
    Sharvani, G. S., Ananth, A. G., & Rangaswamy, T. M. (2012). Analysis of different pheromone decay techniques for ACO based routing in ad hoc wireless networks. International Journal of Computer Applications, 56(2),Google Scholar
  16. 16.
    Socha, K. (2004, September). ACO for continuous and mixed-variable optimization. In International Workshop on Ant Colony Optimization and Swarm Intelligence (pp. 25–36). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  17. 17.
    Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4), 353–373.CrossRefGoogle Scholar
  19. 19.
    Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013). Traveling salesman problem. In Encyclopedia of Operations Research and Management Science (pp. 1573–1578). Springer US.Google Scholar
  20. 20.
    Reinelt, G. (1991). TSPLIBA traveling salesman problem library. ORSA Journal on Computing, 3(4), 376–384.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Seyedali Mirjalili
    • 1
    Email author
  • Jin Song Dong
    • 1
    • 2
  • Andrew Lewis
    • 1
  1. 1.Institute for Integrated and Intelligent Systems, Griffith University, NathanBrisbaneAustralia
  2. 2.Department of Computer ScienceSchool of Computing, National University of SingaporeSingaporeSingapore

Personalised recommendations