The Effect of a Dam Reservoir on Water Trophic Status and Forms of River Transport of Nutrients

  • Stanisław ChmielEmail author
  • Joanna Sposób
  • Katarzyna Mięsiak-Wójcik
  • Zdzisław Michalczyk
  • Sławomir Głowacki
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 86)


Hydrochemical research conducted in the dam reservoirs often show strong eutrophication of their waters. This usually results from high supply of the mineral forms of nitrogen and phosphorus from the river waters. The reduction of the supply of nutrients to the reservoir below the level causing water quality deterioration can be limited in the case of the agricultural land use in the catchment. In order to reduce nutrients input and to improve the ecological state in the one of the reservoirs in the Eastern Poland, it has been proposed solution: a change of the functioning of the reservoir from dammed to lateral and construction of an additional preliminary reservoir above the existing one.


Biogenes Dam reservoir Rivers Water quality 



This work was supported by the Polish Ministry of Science and Higher Education No. N N306181237.


  1. 1.
    Vannote RL et al (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137CrossRefGoogle Scholar
  2. 2.
    Kajak Z (2001) Hydrobiology-limnology. Ecosystems of inland waters. PWN, Warszawa, p 360Google Scholar
  3. 3.
    Woyciechowska J, Dojlido J (1982) Changes in the quality of surface waters under the influence of hydrotechnical infrastructure. Gospodarka Wodna 5:47–51Google Scholar
  4. 4.
    Siuta W, Chróst JR (2015) Hydrobiotechnology – biological basis, the current state of knowledge and development prospects. Technologia Wody 5(45):31–41Google Scholar
  5. 5.
    Cooke GD et al (2005) Restoration and management of lakes and reservoirs. Taylor and Francis, Boca RatonGoogle Scholar
  6. 6.
    Chmiel S et al (2009) Some issues in the assessment of eutrophication of river waters as a consequence of the construction of a storage reservoir (on the example of the Bystrzyca River). Ecohydrol Hydrobiol 9(2–4):175–179CrossRefGoogle Scholar
  7. 7.
    Zalewski M (2012) Ecohydrology – process oriented thinking for sustainability of river basins. Ecohydrol Hydrobiol 12(2):89–92CrossRefGoogle Scholar
  8. 8.
    Pütz K, Benndorf J (1998) The importance of pre-reservoirs for the control of eutrophication of reservoirs. Water Sci Technol 37(2):317–324CrossRefGoogle Scholar
  9. 9.
    Mazur A (2013) Performance evaluation of the pre-dam reservoir on the Por River. Infrastruct Ecol Rural Areas 1(4):299–310Google Scholar
  10. 10.
    Michalczyk Z (2012) Assessment of the conditions of water occurrence and development of surface runoff in Lublin. UMCS, Lublin, p 268Google Scholar
  11. 11.
    Skowron P, Igras J (2012) Anthropogenic sources of nitrogen in the Bystrzyca River catchment. Przemysł Chemiczny 91(5):970–977Google Scholar
  12. 12.
    Skowron P, Igras J (2013) Anthropogenic sources of phosphorus in the catchment of the Bystrzyca river. Preliminary analysis of the share of agriculture in the water pollution. Przemysł Chemiczny 92(5):787–790Google Scholar
  13. 13.
    Radwan S (2004) Zemborzyce reservoir. Ecological structure anthropogenic threats and protection. Polska Akademia Nauk – Komitet Inżynierii Środowiska, Akademia Rolnicza, LublinGoogle Scholar
  14. 14.
    How to improve the ecological state of the Zemborzyce Reservoir in Lublin (2007) Conference proceedings, Lublin, 17 Apr 2007Google Scholar
  15. 15.
    Zemborzyce Reservoir in Lublin (2015) Chances and threats, Lublin City Office, LublinGoogle Scholar
  16. 16.
    Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369CrossRefGoogle Scholar
  17. 17.
    Kratzer CR, Brezonik PL (1981) A Carlson-type trophic state index for nitrogen in Florida lakes. Water Resour Bull 17:713–715CrossRefGoogle Scholar
  18. 18.
    Vollenweider RA (1968) Scientific Fundamentals of the Eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, Paris, DAS/SCI/68.27Google Scholar
  19. 19.
    Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33:53–83Google Scholar
  20. 20.
    PN-EN ISO 10304-1 (2009) Water quality – determination of dissolved anions by means of ionic chromatography – part IGoogle Scholar
  21. 21.
    PN-EN ISO 14911 (2002) Water quality – determination of dissolved cations by means of ionic chromatography – method for waters and sewageGoogle Scholar
  22. 22.
    PN-ISO 6058 (1999) Water quality – determination of calcium content – titration methods with EDTAGoogle Scholar
  23. 23.
    PN-EN ISO 9963-1 (2001) Water quality – determination of total alkalinityGoogle Scholar
  24. 24.
    PN-EN 872 (2007) Water quality – determination of suspensionsGoogle Scholar
  25. 25.
    Method 8048, Hach, Phosphorus reactive. Ascorbic acidGoogle Scholar
  26. 26.
    Method 10071, Hach, Nitrogen total. Alkaline persulfate digestionGoogle Scholar
  27. 27.
    Method 8190, Hach, Phosphorus total. Acid persulfate digestionGoogle Scholar
  28. 28.
    Pawlik-Skowrońska B, Toporowska M, Kalinowska R (2015) Dynamics research of blue-green algae and cyanotoxins production in Zemborzyce reservoir against the background of environmental conditions. In: Zemborzyce reservoir in Lublin. Chances and threats. Lublin City Office, Lublin, pp 63–67Google Scholar
  29. 29.
    Dobrowolski R et al (2015) Geological reconnaissance of bottom deposits and bedrock structure of Zemborzyce reservoir. In: Zemborzyce reservoir in Lublin. Chances and threats. Lublin City Office, Lublin, pp 49–62Google Scholar
  30. 30.
    Rodzik J, Dobrowolski R, Melke J (2009) Estimation of kind, amount and mechanism of sedimentation in the Zemborzyce reservoir near Lublin. Teka Kom Ochr Kszt Środ Przyr 6:261–276Google Scholar
  31. 31.
    Smal H et al (2013) Nitrogen and phosphorus in bottom sediments of two small dam reservoirs. Pol J Environ Stud 22(5):1479–1489Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stanisław Chmiel
    • 1
    Email author
  • Joanna Sposób
    • 1
  • Katarzyna Mięsiak-Wójcik
    • 1
  • Zdzisław Michalczyk
    • 1
  • Sławomir Głowacki
    • 2
  1. 1.Department of Hydrology and Climatology, Faculty of Earth Sciences and Spatial ManagementMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Regional Water Management Board, Polish WatersLublinPoland

Personalised recommendations