Skip to main content

A Viscoelastic Model of the Long-Term Orthodontic Tooth Movement

  • Conference paper
  • First Online:
Book cover Advances in Artificial Systems for Medicine and Education II (AIMEE2018 2018)

Abstract

The objective of this study was to propose an approach to simulate orthodontic tooth movement by modeling of periodontal ligament as a viscoelastic material. Although there are various models of tooth movement proposed by several authors, most of them are based on empirical remodeling laws without considering nature of biochemical processes occurring in the periodontal ligament during orthodontic tooth movement. The proposed approach allows to describe the process of long-term orthodontic tooth movement more accurately and use it to improve the efficiency of orthodontic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanda, R.: Biomechanics and Esthetic Strategies in Clinical Orthodontics. Elsevier Saunders, St. Louis (2005). ISBN 978-0-7216-0196-0

    Google Scholar 

  2. Arutyunov, S.D., Gavryushin, S.S., Demishkevich, E.B.: Finite-Element Modeling of the Orthodontic Tooth Movement, No. 3 (54), pp. 108–120. Herald of the Bauman Moscow State Technical University (2014) (in Russian)

    Google Scholar 

  3. Schneider, J., Geiger, M., Sander, F.-G.: Effects of bone remodeling during tooth movement. Russ. J. Biomech. 4(3), 57–72 (2000)

    Google Scholar 

  4. Soncini, M., Pietrabissa, R.: Quantitative approach for the prediction of tooth movement during orthodontic treatment. Comput. Methods Biomech. Biomed. Eng. 5(5), 361–368 (2002). https://doi.org/10.1080/1025584021000016852

    Article  Google Scholar 

  5. Mengoni, M., Ponthot, J.: A damage/repair model for alveolar bone remodelling. Paper presented at: CMBBE 2008. Proceedings of the 8th Computer Methods in Biomechanics and Biomedical Engineering, Porto, Portugal

    Google Scholar 

  6. Tanne, K., Sakuda, M., Burstone, C.J.: Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 92(6), 499–505 (1987). https://doi.org/10.1016/0889-5406(87)90232-0

    Article  Google Scholar 

  7. Chen, J., Li, W., Swain, M.V., Ali Darendeliler, M., Li, Q.: A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. J. Biomech. 47(7), 1689–1695 (2014). https://doi.org/10.1016/j.jbiomech.2014.02.030

    Article  Google Scholar 

  8. De Jong, T., Bakker, A.D., Everts, V., Smit, T.H.: The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. J. Periodontal Res. 52(6), 965–974 (2017). https://doi.org/10.1111/jre.12477

    Article  Google Scholar 

  9. Henneman, S., Von den Hoff, J.W., Maltha, J.C.: Mechanobiology of tooth movement. Eur. J. Orthod. 30(3), 299–306 (2008). https://doi.org/10.1093/ejo/cjn020

    Article  Google Scholar 

  10. Cowin, S.C., Hegedus, D.H.: Bone remodeling I: theory of adaptive elasticity. J. Elast. 6(3), 313–326 (1976). https://doi.org/10.1007/bf00041724

    Article  MathSciNet  MATH  Google Scholar 

  11. Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-theoretical development. J. Orthop. Res. 8(5), 651–661 (1990). https://doi.org/10.1002/jor.1100080506

    Article  Google Scholar 

  12. Sokolovskyy, Y., Levkovych, M.: Two-dimensional mathematical models of visco-elastic deformation using a fractional differentiation apparatus. Int. J. Mod. Edu. Comput. Sci. (IJMECS) 10(4), 1–9 (2018). https://doi.org/10.5815/ijmecs.2018.04.01

    Article  Google Scholar 

  13. Su, M.-Z., Chang, H.-H., Chiang, Y.-C., Cheng, J.-H., Fuh, L.-J., Wang, C.-Y., Lin, C.-P.: Modeling viscoelastic behavior of periodontal ligament with nonlinear finite element analysis. J. Dental Sci. 8(2), 121–128 (2013). https://doi.org/10.1016/j.jds.2013.01.001

    Article  Google Scholar 

  14. Sharma, G.: Performance analysis of image processing algorithms using matlab for biomedical applications. Int. J. Eng. Manuf. (IJEM) 7(3), 8–19 (2017). https://doi.org/10.5815/ijem.2017.03.02

    Article  Google Scholar 

  15. Hamdi, M.A.: A comparative study in wavelets, curvelets and contourlets as denoising biomedical images. Int. J. Image Graph. Signal Process. (IJIGSP) 4(1), 44–50 (2012). https://doi.org/10.5815/ijigsp.2012.01.06

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard B. Demishkevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demishkevich, E.B., Gavriushin, S.S. (2020). A Viscoelastic Model of the Long-Term Orthodontic Tooth Movement. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education II. AIMEE2018 2018. Advances in Intelligent Systems and Computing, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-030-12082-5_29

Download citation

Publish with us

Policies and ethics