Skip to main content

Sensor Placement for Multi-Fidelity Dynamics Model Calibration

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

This paper studies a multi-fidelity resource optimization methodology for sensor location in the calibration of dynamics model parameters. Effective calibration can only be achieved if the information collection in the experiments is successful. This requires a thoughtful study of the sensor configuration to maximize information gain in the calibration of system parameters. This paper proposes a framework for optimizing the sensor number and locations to maximize information gain in the calibration of damping parameters for non-linear dynamics problems. Further, we extend the basic framework to the case of multi-fidelity modeling. In the presence of models of multiple fidelity, runs from the high-fidelity model can be used to correct the low-fidelity surrogate and result in stronger physics-informed priors for calibration with experimental data. This multi-fidelity calibration allows the fusion of information from low and high-fidelity models in inverse problems. The proposed sensor optimization methodology is illustrated for a curved panel subjected to acoustic and non-uniform thermal loading. Two models of different fidelity (a time history analysis and a frequency domain analysis) are employed to calibrate the structure’s damping parameters and model errors. The optimization methodology considers two complicating factors: (1) the damping behavior is input-dependent, and (2) the sensor uncertainty is affected by temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah, P.C., Udwadia, F.: Methodology for optimum sensor locations for parameter identification in dynamic systems. J. Eng. Mech. 120(2), 188–196 (1994)

    Google Scholar 

  2. Kammer, D.C.: Sensor placement for on-orbit modal identification and correlation of large space structures. J. Guid. Control. Dyn. 14, 251–259 (1991)

    Article  Google Scholar 

  3. Kirkegaard, P.H., Brincker, R.: On the optimal location of sensors for parametric identification of linear structural systems. Mech. Syst. Signal Process. 8, 639–647 (1994)

    Article  Google Scholar 

  4. Heredia-Zavoni, E., Esteva, L.: Optimal instrumentation of uncertain structural systems subject to earthquake ground motions. Earthquake Eng. Struct. Dyn. 27, 343–362 (1998)

    Article  Google Scholar 

  5. Heredia-Zavoni, E., Montes-Iturrizaga, R., Esteva, L.: Optimal instrumentation of structures on flexible base for system identification. Earthquake Eng. Struct. Dyn. 28, 1471–1482 (1999)

    Article  Google Scholar 

  6. Papadimitriou, C.: Pareto optimal sensor locations for structural identification. Comput. Methods Appl. Mech. Eng. 194, 1655–1673 (2005)

    Article  Google Scholar 

  7. Papadimitriou, C., Beck, J.L., Au, S.-K.: Entropy-based optimal sensor location for structural model updating. J. Vib. Control. 6, 781–800 (2000)

    Article  Google Scholar 

  8. Papadopoulou, M., Raphael, B., Smith, I., Sekhar, C.: Hierarchical sensor placement using joint entropy and the effect of modeling error. Entropy. 16, 5078 (2014)

    Article  Google Scholar 

  9. Hu, Z., Ao, D., Mahadevan, S.: Calibration experimental design considering field response and model uncertainty. Comput. Methods Appl. Mech. Eng. 318, 92–119 (2017)

    Article  MathSciNet  Google Scholar 

  10. Abdullah, M.M., Richardson, A., Hanif, J.: Placement of sensors/actuators on civil structures using genetic algorithms. Earthquake Eng. Struct. Dyn. 30, 1167–1184 (2001)

    Article  Google Scholar 

  11. Raich, A.M., Liszkai, T.R.: Multi-objective optimization of sensor and excitation layouts for frequency response function-based structural damage identification. Comput. Aided Civ. Inf. Eng. 27, 95–117 (2012)

    Article  Google Scholar 

  12. Guratzsch, R.F., Mahadevan, S.: Structural health monitoring sensor placement optimization under uncertainty. AIAA J. 48, 1281–1289 (2010)

    Article  Google Scholar 

  13. Huan, X., Marzouk, Y.: Gradient-based stochastic optimization methods in Bayesian experimental design. Int. J. Uncertainty Quantification. 4, 479–510 (2014)

    Article  MathSciNet  Google Scholar 

  14. Nath, P., Hu, Z., Mahadevan, S.: Sensor placement for calibration of spatially varying model parameters. J. Comput. Phys. 343, 150–169 (2017)

    Article  MathSciNet  Google Scholar 

  15. Adhikari, S.: Damping Models for Structural Vibration, Trinity College, University of Cambridge, Cambridge, England (2000)

    Google Scholar 

  16. Gordon, R.W., Hollkamp, J.J.: Reduced-order models for acoustic response prediction, DTIC Document (2011)

    Google Scholar 

  17. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 57, 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  18. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46, 167–174 (1992)

    MathSciNet  Google Scholar 

  19. Neal, R.M.: Slice sampling. Ann. Statist. 31, 705–767 (2003)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Z., Jiang, C., Han, X., Hu, D., Yu, S.: A response surface approach for structural reliability analysis using evidence theory. Adv. Eng. Softw. 69, 37–45 (2014)

    Article  Google Scholar 

  21. Hurtado, J.E., Alvarez, D.A.: Neural-network-based reliability analysis: a comparative study. Comput. Methods Appl. Mech. Eng. 191, 113–132 (2001)

    Article  Google Scholar 

  22. Ghanem, R.G., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, Berlin (1991)

    Book  Google Scholar 

  23. Romero, V.J., Swiler, L.P., Giunta, A.A.: Construction of response surfaces based on progressive-lattice-sampling experimental designs with application to uncertainty propagation. Struct. Saf. 26, 201–219 (2004)

    Article  Google Scholar 

  24. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  25. Absi, G.N., Mahadevan, S.: Input-dependence effects in dynamics model calibration. Mech. Syst. Signal Process. 109, 285–304 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Absi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Absi, G.N., Mahadevan, S. (2020). Sensor Placement for Multi-Fidelity Dynamics Model Calibration. In: Barthorpe, R. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12075-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12075-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12074-0

  • Online ISBN: 978-3-030-12075-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics