Skip to main content

An Analysis of Road Traffic Flow Characteristics Using Wavelet Transform

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2019)

Abstract

Measures to obtain reliable information about the current state of traffic flows are necessary to introduce effective control methods offered by modern intelligent transport systems. We developed a method and software for the wavelet analysis of road traffic flow characteristics in the frequency and time domains without restoring the missing samples. The developed method was implemented in the form of software embedded in an intelligent transport system. The method of wavelet analysis of road traffic flow characteristics takes into account the non-equidistance of data, which allows the construction of a time-frequency scan with a uniform representation without restoring the missing samples with adjustment of the sampling intervals. Background data on traffic flows for analysis was obtained from the CityPulse Dataset Collection. We analyzed such characteristics as average speed and vehicle count. We analyzed wavelet spectra and scalograms, identified common dependencies in the frequency distribution of extremes, and revealed differences in spectral power for different road segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lima, S.F., Barbosa, S.A.A., Palmeira, P.C., Matos, L., Secundo, I., Nascimento, R.: Systematic review: techniques and methods of urban monitoring in intelligent transport systems. In: International Conference on Wireless and Mobile Communications, ICWMC, pp. 1–5. ARIA, Nice (2017)

    Google Scholar 

  2. Taylor, M.A., Bonsall, P.W.: Understanding Traffic Systems: Data Analysis and Presentation, 2nd edn. Routledge, London (2017)

    Book  Google Scholar 

  3. Jain, N.K., Saini, R.K., Mittal, P.A.: Review on traffic monitoring system techniques. Soft Comput.: Theories Appl. 742, 569–577 (2019)

    Google Scholar 

  4. Askari, H., Asadi, E., Saadatnia, Z., Khajepour, A., Khamesee, M.B., Zu, J.: A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization. Nano Energy 32, 105–116 (2017)

    Article  Google Scholar 

  5. Sahgal, D., Ramesh, A., Parida, M.: Real-time vehicle queue detection at urban traffic intersection using image processing. Int. J. Eng. Sci. Generic Res. 4(2), 12–15 (2018)

    Google Scholar 

  6. Liu, Z., Jiang, S., Zhou, P., Li, M.: A participatory urban traffic monitoring system: the power of bus riders. IEEE Trans. Intell. Transp. Syst. 18(10), 2851–2864 (2017)

    Article  Google Scholar 

  7. Bellavista, P., Caselli, F., Corradi, A., Foschini, L.: Cooperative vehicular traffic monitoring in realistic low penetration scenarios: the COLOMBO experience. Sensors 18(3), 822 (2018)

    Article  Google Scholar 

  8. Fedoseev, A., Golovnin, O., Mikheeva, T.: An approach for GIS-based transport infrastructure model synthesis on the basis of hyperspectral information. Procedia Eng. 201, 363–371 (2017)

    Article  Google Scholar 

  9. Wang, Y.D., Xu, D.W., Lu, Y., Shen, J.Y., Zhang, G.J.: Compression algorithm of road traffic data in time series based on temporal correlation. IET Intell. Transp. Syst. 12(3), 177–185 (2017)

    Article  Google Scholar 

  10. Crawford, F., Watling, D.P., Connors, R.D.: A statistical method for estimating predictable differences between daily traffic flow profiles. Transp. Res. Part B: Methodol. 95, 196–213 (2017)

    Article  Google Scholar 

  11. Tchrakian, T.T., Basu, B., O’Mahony, M.: Real-time traffic flow forecasting using spectral analysis. IEEE Trans. Intell. Transp. Syst. 13(2), 519–526 (2012)

    Article  Google Scholar 

  12. Zhang, Y., Zhang, Y., Haghani, A.: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C: Emerg. Technol. 43, 65–78 (2014)

    Article  Google Scholar 

  13. Jiang, Y., Kang, R., Li, D., Guo, S., Havlin, S.: Spatio-temporal propagation of traffic jams in urban traffic networks. arXiv preprint arXiv:1705.08269 (2017)

  14. Moretti, F., Pizzuti, S., Panzieri, S., Annunziato, M.: Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 167, 3–7 (2015)

    Article  Google Scholar 

  15. Zeroual, A., Harrou, F., Sun, Y., Messai, N.: Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme. Sustain. Cities Soc. 35, 494–510 (2017)

    Article  Google Scholar 

  16. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Orlando (2009)

    MATH  Google Scholar 

  17. Aminghafari, M., Poggi, J.M.: Nonstationary time series forecasting using wavelets and kernel smoothing. Commun. Stat.-Theory Methods 41(3), 485–499 (2012)

    Article  MathSciNet  Google Scholar 

  18. Cheng, Y., Zhang, Y., Hu, J., Li, L.: Mining for similarities in urban traffic flow using wavelets. In: International Conference on Intelligent Transportation Systems Conference, ITSC, pp. 119–124. IEEE, Seattle (2007)

    Google Scholar 

  19. Zhang, H., Wang, X., Cao, J., Tang, M., Guo, Y.: A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series. Appl. Intell. 8, 3827–3838 (2018)

    Article  Google Scholar 

  20. Mohan, D.M., Asif, M.T., Mitrovic, N., Dauwels, J., Jaillet, P.: Wavelets on graphs with application to transportation networks. In: International Conference on Intelligent Transportation Systems, ITSC, pp. 1707–1712. IEEE, Qingdao (2014)

    Google Scholar 

  21. Antonios, K., Alexandridis, A., Zapranis, D.: Wavelet neural networks: a practical guide. Neural Netw. 42, 1–27 (2013)

    Article  Google Scholar 

  22. Linhares, L.S.L., Araújo Jr., J.M., Araújo, F.M.U., Yoneyama, T.: A nonlinear system identification approach based on fuzzy wavelet neural network. J. Intell. Fuzzy Syst. 28(1), 225–235 (2015)

    Google Scholar 

  23. Chen, J.F., Lo, S.K., Do, Q.H.: Forecasting short-term traffic flow by fuzzy wavelet neural network with parameters optimized by biogeography-based optimization algorithm. Comput. Intell. Neurosci. 2018, 1–13 (2018)

    Google Scholar 

  24. Boto-Giralda, D., Díaz-Pernas, F.J., González-Ortega, D., Díez-Higuera, J.F., Antón-Rodríguez, M., Martínez-Zarzuela, M., Torre-Díez, I.: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks. Comput.-Aided Civil Infrastruct. Eng. 25(7), 530–545 (2010)

    Article  Google Scholar 

  25. Khaymovich, A.I., Prokhorov, S.A., Stolbova, A.A., Kondratyev, A.I.: A model of milling process based on Morlet wavelets decomposition of vibroacoustic signals. In: International Conference Information Technology and Nanotechnology, vol. 1904, pp. 135–140. ITNT, Samara (2017)

    Google Scholar 

  26. Golovnin, O., Fedoseev, A., Mikheeva, T.: Intelligent geographic information platform for transport process analysis. In: CEUR Workshop Proceedings, vol. 1901, pp. 78–85. RWTH Aachen (2017)

    Google Scholar 

  27. ITSGIS Homepage. http://www.itsgis.ru. Accessed 30 Oct 2018

  28. Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth, M., Ganz, F., Ganea, S., Kjærgaard, B., Kuemper, D., Nechifor, S., Puiu, D., Sheth, A., Tsiatsis, V., Vestergaard, L.: Real time IoT stream processing and large-scale data analytics for smart city applications. In: European Conference on Networks and Communications, Poster Session (2014)

    Google Scholar 

  29. CityPulse Dataset Collection. http://iot.ee.surrey.ac.uk:8080/datasets.html. Accessed 30 Oct 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Golovnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Golovnin, O., Stolbova, A., Ostroglazov, N. (2019). An Analysis of Road Traffic Flow Characteristics Using Wavelet Transform. In: Dolinina, O., Brovko, A., Pechenkin, V., Lvov, A., Zhmud, V., Kreinovich, V. (eds) Recent Research in Control Engineering and Decision Making. ICIT 2019. Studies in Systems, Decision and Control, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-12072-6_35

Download citation

Publish with us

Policies and ethics