Thymus Rejuvenation After Autologous Hematopoietic Stem Cell Transplantation in Patients with Autoimmune Diseases

  • João R. Lima-Júnior
  • Lucas C. M. Arruda
  • Maria Carolina de Oliveira
  • Kelen C. R. MalmegrimEmail author


Autologous hematopoietic stem cell transplantation (AHSCT) has been established as an important therapeutic approach for patients with autoimmune diseases (AD) refractory to conventional treatment. This therapy is able to promote long-term remission in most patients without further use of immunosuppressive medication. High dose immunosuppression depletes autoreactive T and B cells and a new immune system re-emerges from the infused hematopoietic stem cells, a mechanism so-called “immune resetting”. Thymic rejuvenation plays a crucial role in the immune reconstitution and restoration of self-tolerance in AD patients treated with AHSCT. Indeed, recent thymic emigrants promote reestablishment of TCR diversity that is associated with favorable clinical outcomes. However, generally one third of the patients undergo disease reactivation after AHSCT and the involved mechanisms are not yet fully understood. Therefore, additional investigations should be made to improve the knowledge about immune mechanisms involved in AHSCT for AD and to unravel biomarkers of post-transplantation outcomes.



The authors thank Sandra Navarro Bresciani for the illustration and graphic design, Center for Cell-Based Therapy of Ribeirão Preto Medical School, Coordination for the Improvement of Higher Education Personnel (CAPES), and São Paulo Research Foundation (FAPESP) through grant No. 2016/24443-7 to João R. Lima-Júnior.


  1. Abrahamsson S, Muraro PA (2008) Immune re-education following autologous hematopoietic stem cell transplantation. Autoimmunity 41(8):577–584PubMedCrossRefGoogle Scholar
  2. Abrahamsson SV et al (2013) Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136(Pt 9):2888–2903PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abramson J, Anderson G (2017) Thymic epithelial cells. Annu Rev Immunol 35(1):85–118PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alexander T et al (2009) Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113(1):214–223PubMedCrossRefGoogle Scholar
  5. Allanore Y et al (2015) Systemic sclerosis. Nat Rev Dis Primers 1:15002PubMedCrossRefGoogle Scholar
  6. Anderson G et al (2006) Establishment and functioning of intrathymic microenvironments. Immunol Rev 209:10–27PubMedCrossRefGoogle Scholar
  7. Arruda LCMM et al (2015) Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant 50(3):380–389PubMedCrossRefGoogle Scholar
  8. Arruda LCMM et al (2016) Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol 169:47–57PubMedCrossRefGoogle Scholar
  9. Arruda LCM et al (2018a) Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis. Bone Marrow Transplant 53:1319–1327PubMedCrossRefGoogle Scholar
  10. Arruda LCM et al (2018b) Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Adv 2(2):126–141PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aw D et al (2008) Architectural changes in the thymus of aging mice. Aging Cell 7(2):158–167PubMedCrossRefGoogle Scholar
  12. Ayasoufi K, Fan R, Valujskikh A (2017) Depletion-resistant CD4 T cells enhance thymopoiesis during lymphopenia. Am J Transplant 17(8):2008–2019PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baraut J et al (2014) Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transplant 49(3):349–354PubMedCrossRefGoogle Scholar
  14. Barturen G et al (2018) Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat Rev Rheumatol 14(2):75–93PubMedCrossRefGoogle Scholar
  15. Benz C et al (2008) The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development. J Exp Med 205(5):1187–1199PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boehm T, Swann JB (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13(11):831–838PubMedCrossRefGoogle Scholar
  17. Bonelli M et al (2008) Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol 20(7):861–868PubMedCrossRefGoogle Scholar
  18. Burt RK et al (2009) Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 8(3):244–253PubMedCrossRefGoogle Scholar
  19. Burt RK et al (2011) Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378(9790):498–506PubMedCrossRefGoogle Scholar
  20. Cheng M, Anderson MS (2018) Thymic tolerance as a key brake on autoimmunity. Nat Immunol 19(July):1Google Scholar
  21. Chung B et al (2014) Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cells 32(9):2386–2396PubMedPubMedCentralCrossRefGoogle Scholar
  22. Churlaud G et al (2015) Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during interleukin-2 therapy. Front Immunol 6(April):2–11Google Scholar
  23. Coder BD et al (2015) Thymic involution perturbs negative selection leading to autoreactive T cells that induce chronic inflammation. J Immunol 194(12):5825–5837PubMedPubMedCentralCrossRefGoogle Scholar
  24. Darlington PJ et al (2013) Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol 73(3):341–354PubMedCrossRefGoogle Scholar
  25. Delemarre EM et al (2014) Autologous stem cell transplantation restores immune tolerance in experimental arthritis by renewal and modulation of the Teff cell compartment. Arthritis Rheumatol 66(2):350–356PubMedPubMedCentralCrossRefGoogle Scholar
  26. Delemarre EM et al (2016) Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood 127(1):91–102PubMedCrossRefGoogle Scholar
  27. Dixit VD (2010) Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 22(4):521–528PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17(6):673–675PubMedPubMedCentralCrossRefGoogle Scholar
  29. Douaisi M et al (2017) CD31, a Valuable Marker to Identify Early and Late Stages of T Cell Differentiation in the Human Thymus. J Immunol 198(6):2310–2319. Scholar
  30. Dubinsky AN et al (2010) T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft. Bone Marrow Transplant 45(2):325–331PubMedCrossRefGoogle Scholar
  31. Farge D et al (2010) Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 95(2):284–292PubMedCrossRefGoogle Scholar
  32. Farge D et al (2017) Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol 10(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  33. Haseda F et al (2013) CD4+CD45RA-FoxP3highactivated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin Exp Immunol 173(2):207–216PubMedPubMedCentralCrossRefGoogle Scholar
  34. Haufe S et al (2011) Impaired suppression of synovial fluid CD4+CD25− T cells from patients with juvenile idiopathic arthritis by CD4+CD25+ Treg cells. Arthritis Rheum 63(10):3153–3162PubMedCrossRefGoogle Scholar
  35. Henderson LA et al (2016) Next-generation sequencing reveals restriction and clonotypic expansion of Treg cells in juvenile idiopathic arthritis. Arthritis Rheumatol 68(7):1758–1768PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hoffman ES et al (1997) Productive T-cell receptor-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev 10:948–962CrossRefGoogle Scholar
  37. Janas ML et al (2010) Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J Exp Med 207(1):247–261PubMedPubMedCentralCrossRefGoogle Scholar
  38. Josefowicz SZ, Lu L-F, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30(1):531–564PubMedPubMedCentralCrossRefGoogle Scholar
  39. Katsumoto TR, Whitfield ML, Connolly MK (2011) The pathogenesis of systemic sclerosis. Annu Rev Pathol 6:509–537PubMedCrossRefGoogle Scholar
  40. Kreslavsky T et al (2013) Negative selection, not receptor editing, is a physiological response of autoreactive thymocytes. J Exp Med 210(10):1911–1918PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lin J et al (2016) Increased generation of Foxp3+ regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun 7:1–12Google Scholar
  42. Malchow S et al (2016) Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44(5):1102–1113PubMedPubMedCentralCrossRefGoogle Scholar
  43. Malmegrim KCR et al (2017) Immunological balance is associated with clinical outcome after autologous hematopoietic stem cell transplantation in Type 1 diabetes. Front Immunol 8:167PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mayerl C, Prelog M (2012) Immunosenescence and juvenile idiopathic arthritis. Autoimmun Rev 11(5):297–300PubMedCrossRefGoogle Scholar
  45. Meireles C et al (2017) Thymic crosstalk restrains the pool of cortical thymic epithelial cells with progenitor properties. Eur J Immunol 47(6):958–969PubMedCrossRefGoogle Scholar
  46. Mellins ED, MacAubas C, Grom AA (2011) Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat Rev Rheumatol 7(7):416–426PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mensen A et al (2013) Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J Transl Med 11:1CrossRefGoogle Scholar
  48. Miller JF, Osoba D (1967) Current concepts of the immunological function of the thymus. Physiol Rev 47(3):437–520PubMedCrossRefGoogle Scholar
  49. Milo R, Miller A (2014) Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev 13(4–5):518–524PubMedCrossRefGoogle Scholar
  50. Moulton VR et al (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23(7):615–635PubMedPubMedCentralCrossRefGoogle Scholar
  51. Muraro PA et al (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201(5):805–816PubMedPubMedCentralCrossRefGoogle Scholar
  52. Muraro PA et al (2014) Brief report T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 124(3):1168–1172PubMedPubMedCentralCrossRefGoogle Scholar
  53. Muraro PA et al (2017) Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol 13(7):391–405PubMedCrossRefGoogle Scholar
  54. Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38(3):414–423PubMedCrossRefGoogle Scholar
  55. Oliveira EH et al (2013) Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology 218(1):96–104PubMedCrossRefGoogle Scholar
  56. Papp G et al (2011) Altered T-cell and regulatory cell repertoire in patients with diffuse cutaneous systemic sclerosis. Scand J Rheumatol 40(3):205–210PubMedCrossRefGoogle Scholar
  57. Passos GA et al (2018) Update on Aire and thymic negative selection. Immunology 153(1):10–20PubMedPubMedCentralCrossRefGoogle Scholar
  58. Reiff A et al (2009) Study of thymic size and function in children and adolescents with treatment refractory systemic sclerosis eligible for immunoablative therapy. Clin Immunol 133(3):295–302PubMedCrossRefGoogle Scholar
  59. Ribeiro AR et al (2013) Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo. J Immunol 191(3):1200–1209PubMedCrossRefGoogle Scholar
  60. Roep BO, Tree TIM (2014) Immune modulation in humans: implications for type 1 diabetes mellitus. Nat Rev Endocrinol 10(4):229–242PubMedCrossRefGoogle Scholar
  61. Rosati E et al (2017) Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17(1):1–16CrossRefGoogle Scholar
  62. Rossetti M et al (2017) TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis. Ann Rheum Dis 76(2):435–441PubMedCrossRefGoogle Scholar
  63. Schwarz BA et al (2007) Selective thymus settling regulated by cytokine and chemokine receptors. J Immunol 178(4):2008–2017PubMedPubMedCentralCrossRefGoogle Scholar
  64. Snowden JA et al (2017) Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv 1(27):2742–2755PubMedPubMedCentralCrossRefGoogle Scholar
  65. Snowden JA et al (2018) Autologous haematopoietic stem cell transplantation (AHSCT) in severe Crohn’s Disease: a review on behalf of ECCO and EBMT. J Crohns Colitis 12(4):476–488PubMedCrossRefGoogle Scholar
  66. Speck-Hernandez CA et al (2018) Aire disruption influences the medullary thymic epithelial cell transcriptome and interaction with thymocytes. Front Immunol 9:1–15CrossRefGoogle Scholar
  67. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176PubMedCrossRefGoogle Scholar
  68. Suárez-Fueyo A, Bradley SJ, Tsokos GC (2016) T cells in systemic lupus erythematosus. Curr Opin Immunol 43:32–38PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sun W et al (2004) Characteristics of T-cell receptor repertoire and myelin-reactive T cells reconstituted from autologous haematopoietic stem-cell grafts in multiple sclerosis. Brain 127(5):996–1008PubMedCrossRefGoogle Scholar
  70. Swart JF et al (2017) Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev Rheumatol 13(4):244–256PubMedCrossRefGoogle Scholar
  71. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135CrossRefGoogle Scholar
  72. Tchao NK, Turka LA (2012) Lymphodepletion and homeostatic proliferation: implications for transplantation. Am J Transplant 12(5):1079–1090PubMedCrossRefGoogle Scholar
  73. Thapa DR et al (2015) Longitudinal analysis of peripheral blood T cell receptor diversity in patients with systemic lupus erythematosus by next-generation sequencing. Arthritis Res Ther 17(1):132PubMedPubMedCentralCrossRefGoogle Scholar
  74. Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat Immunol 18(7):716–724PubMedPubMedCentralCrossRefGoogle Scholar
  75. Thiel A et al (2008) Direct assessment of thymic reactivation after autologous stem cell transplantation. Acta Haematol 119(1):22–27PubMedCrossRefGoogle Scholar
  76. Toubert A et al (2012) Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens 79(2):83–89PubMedCrossRefGoogle Scholar
  77. Trampont PC et al (2010) CXCR4 acts as a costimulator during thymic Β-selection. Nat Immunol 11(2):162–170CrossRefGoogle Scholar
  78. van Laar JM et al (2014) Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis. JAMA 311(24):2490PubMedCrossRefGoogle Scholar
  79. Wehrens EJ et al (2011) Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood 118(13):3538–3548PubMedCrossRefGoogle Scholar
  80. Yadav SK et al (2015) Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol 28(3):206–219PubMedCrossRefGoogle Scholar
  81. Zeng L, Dalheimer SL, Yankee TM (2007) Gads−/− mice reveal functionally distinct subsets of TCR+ CD4−CD8− double-negative thymocytes. J Immunol 179(2):1013–1021PubMedCrossRefGoogle Scholar
  82. Zhang L et al (2009) Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol 183(10):6346–6358PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João R. Lima-Júnior
    • 1
    • 2
  • Lucas C. M. Arruda
    • 3
  • Maria Carolina de Oliveira
    • 2
    • 4
    • 5
  • Kelen C. R. Malmegrim
    • 1
    • 2
    • 6
    Email author
  1. 1.Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Center for Cell-Based Therapy, Regional Hemotherapy Center of Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  3. 3.Department of Clinical Science, Intervention and TechnologyKarolinska InstitutetStockholmSweden
  4. 4.Divison of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  5. 5.Basic and Applied Immunology Program, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  6. 6.Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations