Skip to main content

V-FCNN: Volumetric Fully Convolution Neural Network for Automatic Atrial Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

Abstract

Atrial Fibrillation (AF) is a common electro-physiological cardiac disorder that causes changes in the anatomy of the atria. A better characterization of these changes is desirable for the definition of clinical biomarkers. There is thus a need for its fully automatic segmentation from clinical images. This work presents an architecture based on 3D-convolution kernels, a Volumetric Fully Convolution Neural Network (V-FCNN), able to segment the entire atrial anatomy in a one-shot from high-resolution images (\(640\times 640\) pixels). A loss function based on the mixture of both Mean Square Error (MSE) and Dice Loss (DL) is used, in an attempt to combine the ability to capture the bulk shape as well as the reduction of local errors caused by over-segmentation.

Results demonstrate a good performance in the middle region of the atria along with the challenges impact of capturing the pulmonary veins variability or valve plane identification that separates the atria to the ventricle. Despite the need to reduce the original image resolution to fit into Graphics Processing Unit (GPU) hardware constraints, \(92.5\%\) and \(85.1\%\) were obtained respectively in the 2D and 3D Dice metric in 54 test patients (4752 atria test slices in total), making the V-FCNN a reasonable model to be used in clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prystowsky, E.N., Benson, D.W., Fuster, V.: Management of patients with atrial fibrillation?: a statement for healthcare professionals from the subcommittee on electrocardiography and electrophysiology. American Heart Association. Circulation 93, 15 (1996)

    Article  Google Scholar 

  2. Varela, M., et al.: Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation. Front. Physiol. 8, 68 (2017)

    Article  Google Scholar 

  3. Kim, R.J., Wu, E., Rafael, A., et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445–1453 (2000)

    Article  Google Scholar 

  4. Boyle, P.M., Zahid, S., Trayanova, N.A.: Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. EP Europace 18, 136–145 (2016)

    Article  Google Scholar 

  5. Tao, Q., Shahzad, R., Ipek, E.G., Berendsen, F.F., Nazarian, S., van der Geest, R.J.: Fully automated segmentation of left atrium and pulmonary veins in late gadolinium enhanced MRI. J. Cardiovasc. Magn. Reson. 18(1), O84 (2016)

    Article  Google Scholar 

  6. Mortazi, A., Karim, R., Rhode, K.S., Burt, J., Bagci, U.: CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. CoRR, abs/1705.06333 (2017)

    Google Scholar 

  7. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. CoRR, abs/1606.04797 (2016)

    Google Scholar 

  8. Isensee, F., Jaeger, P., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. CoRR, abs/1707.00587 (2017)

    Google Scholar 

  9. Winther, H.B., et al.: v-Net: deep learning for generalized biventricular cardiac mass and function parameters. CoRR, abs/1706.04397 (2017)

    Google Scholar 

  10. Kaur, H., Sharmila Rani, J.: MRI brain image enhancement using histogram equalization techniques. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 770–773 (2016)

    Google Scholar 

  11. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  12. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. CoRR (1996)

    Google Scholar 

  13. Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8

    Chapter  Google Scholar 

  14. Chen, J., Yang, L., Zhang, Y., Alber, M.S., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. CoRR, abs/1609.01006 (2016)

    Google Scholar 

  15. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. CoRR, abs/1606.02147 (2016)

    Google Scholar 

  16. Xiong, Z., Fedorov, V.V., Fu, X., Cheng, E., Macleod, R., Zhao, J.: Fully automatic left atrium segmentation from late gadolinium enhanced magnetic resonance imaging using a dual fully convolutional neural network. IEEE Trans. Med. Imaging, 1 (2018)

    Google Scholar 

  17. Savioli, N., Vieira, M.S., Lamata, P., Montana, G.: A generative adversarial model for right ventricle segmentation. arXiv:1810.03969, 27 September 2018

  18. Savioli, N., Vieira, M.S., Lamata, P., Montana, G.: Automated segmentation on the entire cardiac cycle using a deep learning work-flow. arXiv:1809.01015, 31 August 2018

  19. Pascanu, R., Mikolov, T., Bengio, Y.: Understanding the exploding gradient problem. CoRR, abs/1211.5063 (2012)

    Google Scholar 

  20. Chang, A.X.M., Martini, B., Culurciello, E.: Recurrent neural networks hardware implementation on FPGA. CoRR, abs/1511.05552 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome/EPSRC Centre for Medical Engineering at King’s College London [g.a. 203148/Z/16/Z]. PL holds a Wellcome Trust Senior Research Fellowship [g.a. 209450/Z/17/Z].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicoló Savioli , Giovanni Montana or Pablo Lamata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Savioli, N., Montana, G., Lamata, P. (2019). V-FCNN: Volumetric Fully Convolution Neural Network for Automatic Atrial Segmentation. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics