Activity Monitoring and Phase Detection Using a Portable EMG/ECG System

  • Wulhelm Daniel ScherzEmail author
  • Ralf Seepold
  • Natividad Martínez Madrid
  • Paolo Crippa
  • Giorgio Biagetti
  • Laura Falaschetti
  • Claudio Turchetti
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)


The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.



This research was partially funded by the EU Interreg V-Program “Alpenrhein-Bodensee-Hochrhein”: Project “IBH Living Lab Active and Assisted Living”.


  1. 1.
    Black, P.H., Garbutt, L.D.: Stress, inflammation and cardiovascular disease. J. Psychosom. Res. 52(1), 1–23 (2002)CrossRefGoogle Scholar
  2. 2.
    Schmidt, N.B., Lerew, D.R., Jackson, R.J.: The role of anxiety sensitivity in the pathogenesis of panic: prospective evaluation of spontaneous panic attacks during acute stress. J. Abnorm. Psychol. Bd. Volumen 5(2), 355–364 (1997)CrossRefGoogle Scholar
  3. 3.
    Epel, E.S., Blackburn, E.H., Lin, J., Dhabhar, F.S., Adler, N.E., Morrow, J.D., Cawthon, R.M.: Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. 101(49), 17312–17331 (2004)CrossRefGoogle Scholar
  4. 4.
    Jansen, A.S.P., Van Nguyen, X., Karpitskiy, V., Mettenleiter, T.C., Loewy, A.D.: Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Sci. Bd. 270, 644–646 (1995)CrossRefGoogle Scholar
  5. 5.
    Afifi, T.D., Zamanzadeh, N., Harrison, K., Callejas, M.A.: WIRED: the impact of media and technology use on stress (cortisol) and inflammation (interleukin IL-6) in fast paced families*. Comput. Hum. Behav. 81, 265–273 (2018)CrossRefGoogle Scholar
  6. 6.
    Martinez Fernandez, J., Augusto, J.C., Seepold, R., Martínez Madrid, N.: A sensor technology survey for a stress-aware trading process. IEEE Trans. Sys. Man Cybern. Part C Appl. Rev. 42, 809–824 (2012)CrossRefGoogle Scholar
  7. 7.
    Martínez Fernández, J., Augusto, J.C., Seepold, R., Martínez Madrid, N.: Why Traders Need Ambient Intelligence, Germany. Springer Berlin, Heidelberg (2010)Google Scholar
  8. 8.
    Martínez Fernández, J., Augusto, J.C., Trombino, G., Seepold, R., Martínez Madrid, N.: Self-aware trader: a new approach to safer trading. J. Univ. Comput. Sci. (2013)Google Scholar
  9. 9.
    Roozendaal, B., McEwen, B.S., Chattarji, S.: Stress, memory and the amygdala. Nature Rev. Neurosci. 10, 423–433 (2009)CrossRefGoogle Scholar
  10. 10.
    Orth-Gomér, K., et al.: Marital stress worsens prognosis in women with coronary heart disease: the Stockholm female coronary risk study. J. Am. Med. Assoc. (2000)Google Scholar
  11. 11.
    Mei, Y., Thompson, M.D., Cohen, R.A., Tong, X.: Autophagy and oxidative stress in cardiovascular diseases. In: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (2015)CrossRefGoogle Scholar
  12. 12.
    Lupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C.: Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009)CrossRefGoogle Scholar
  13. 13.
    Gutin, B., et al.: Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. AS for Clin. Nutr. ED. 75(5), 818–826 (2002)CrossRefGoogle Scholar
  14. 14.
    Scherz, W.D., Ortega, J.A., Seepold, R.: Towards emotion pattern extraction with the help of stress detection techniques in order to enable a healthy life. In: ARCA XXVII Conference on Qualitative Systems and Applications in Diagnosis, Robotics and Ambient Intelligence (2016)Google Scholar
  15. 15.
    Scherz, W.D., Ortega, J.A., Seepold, R.: Heart rate variability indicating stress visualized by correlations plots. In: Lecture Notes in Bioinformatics and Biomedical Engineering (LNBI), Vol 9044, Subseries of Lecture Notes in Computer Science (2015)CrossRefGoogle Scholar
  16. 16.
    Kidd, T., Carvalho, L.A., Steptoe, A.: The relationship between cortisol responses to laboratory stress andcortisol profiles in daily life. Biol. Psychol. 25(02), 34–40 (2014)CrossRefGoogle Scholar
  17. 17.
    Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Wireless surface electromyograph and electrocardiograph system on 802.15.4. IEEE Trans. Consum. Electron. 62(3), 258–266 (2016)CrossRefGoogle Scholar
  18. 18.
    Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes. BioMed. Eng. Online 17(132) (2018)Google Scholar
  19. 19.
    Chohen, S., Kamarck, T., Mermelstein, R.: A global mesure of preceved stress. J. Healt Soc. Behav. 24(4), 385–396 (1983)CrossRefGoogle Scholar
  20. 20.
    Juliane, H., Melanie, S.: The physiological response to Trier Social Stress Test relates to subjective measures of stress during but not before or after the test. Psychoneuroendocrinology 37(1) (2012)Google Scholar
  21. 21.
    Gunawardhane, S.D., De Silva, P.M., Kulathunga, D.S., Arunatileka, S.M.: Non invasive human stress detection using key stroke dynamics and pattern variations. In: International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo (2013)Google Scholar
  22. 22.
    Vizer, L., Zhou, L., Sears, A.: Automated stress detection using keystroke and linguistic features: an exploratory study. Int. J. Hum Comput Stud. 67(10), 870–886 (2009)CrossRefGoogle Scholar
  23. 23.
    Paredes, P.E., Ordoñez, F., Ju, W., Landay, J.A.: Fast & furious: detecting stress with a car steering wheel. In: CHI Conference on Human Factors in Computing Systems, Montréal (2018)Google Scholar
  24. 24.
    Peng, C.-K., Henry, I.C., Mietus, J.E., Hausdorff, J.M., Khalsa, G., Benson, H., Goldberger, A.L.: Heart rate dynamics during three forms of meditation. Int. J. Cardiol., 19–27 (2004)CrossRefGoogle Scholar
  25. 25.
    Magno, M., Benini, L., Spagnol, C., Popovici, E.: Wearable low power dry surface wireless sensor node for healthcare monitoring application. In: International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 189–195 (2013)Google Scholar
  26. 26.
    Stroop, J.R.: Studies of interference in serial verbal reactions. J. Exp. Psychol., 643–662 (1935)CrossRefGoogle Scholar
  27. 27.
    Kirschbaum, C., Pirke, K.-M., Hellhammer, D.H.: The ‘Trier Social Stress Test’- a tool for investigating pyschobiological stress responses in a laboratory settings. Neuropychobiologie, 78–81 (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wulhelm Daniel Scherz
    • 1
    Email author
  • Ralf Seepold
    • 1
    • 2
  • Natividad Martínez Madrid
    • 2
    • 3
  • Paolo Crippa
    • 4
  • Giorgio Biagetti
    • 4
  • Laura Falaschetti
    • 4
  • Claudio Turchetti
    • 4
  1. 1.HTWG KonstanzKonstanzGermany
  2. 2.Department of Information and Internet TechnologySechenov UniversityMoscow, MoscowRussia
  3. 3.Reutlingen UniversityReutlingenGermany
  4. 4.Department of Information EngineeringUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations