Skip to main content

Post-buckling Progressive Failure Analysis of Composite Panels Using a Two-Way Global-Local Coupling Approach Including Intralaminar Failure and Debonding

  • Chapter
  • First Online:
Book cover Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites

Part of the book series: PoliTO Springer Series ((PTSS))

  • 575 Accesses

Abstract

A novel two-way global-local coupling approach to model progressive separation of skin and stringer in combination with intralaminar damage in stiffened CFRP panels under compression is presented. The methodology makes it possible to examine the damage at two levels of accuracy, taking advantage of fast calculations at the global level and assessing in detail the damage propagation at the local level. The required appropriate information exchange between the global and local level in both directions has been attained. This chapter presents an overview of this efficient approach for progressive failure analysis of composite panels and illustrates the approach on the basis of a one-stringer panel, in particular for the case of skin-stringer debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abaqus 6.14 Documentation (2017) Dassault systemes 6.14 edn (V):1–172

    Google Scholar 

  2. Akterskaia M, Jansen E, Hühne S, Rolfes R (2018) Efficient progressive failure analysis of multi-stringer stiffened composite panels through a two-way loose coupling global-local approach. Compos Struct 183:137–145

    Article  Google Scholar 

  3. Akterskaia M, Jansen E, Hallett SR, Weaver R, Raimund R (2018) Analysis of skin-stringer debonding in composite panels through a two-way global-local method. Compos Struct 202:1280–1294

    Article  Google Scholar 

  4. Akterskaia M, Jansen E, Hallett SR, Weaver R, Raimund R (2018) Progressive failure analysis of stiffened composite panels using a two-way loose coupling approach including intralaminar failure and debonding. In: AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–16

    Google Scholar 

  5. Alesi H, Nguyen VM, Mileshkin M, Jones R (1998) Global/local postbuckling failure analysis of composite stringer/skin panels. AIAA J 36(9):1699–1705

    Article  Google Scholar 

  6. Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of laminate delamination. Compos Struct 22:235–242

    Article  Google Scholar 

  7. Balzani C, Wagner W (2010) Numerical treatment of damage propagation in axially compressed composite airframe panels. Int J Struct Stab Dyn 10(4):683–703

    Article  Google Scholar 

  8. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(C):55–129

    Google Scholar 

  9. Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449

    Article  Google Scholar 

  10. Bertolini J, Castanié B, Barrau JJ, Navarro JP, Petiot C (2009) Multi-level experimental and numerical analysis of composite stiffener debonding. Part 2: element and panel level. Compos Struct 90(4):392–403

    Article  Google Scholar 

  11. Bettinotti O, Allix O, Perego U, Oancea V, Malherbe B (2017) Simulation of delamination under impact using a global-local method in explicit dynamics. Finite Elem Anal Des 125:1–13

    Article  Google Scholar 

  12. Borg R, Nilsson L, Simonsson K (2001) Simulation of delamination in fiber composites with a discrete cohesive failure model. Compos Sci Technol 61(5):667–677

    Article  Google Scholar 

  13. Camanho PP, Dávila CG (2002) Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. Technical memorandum TM-2002-211737. Hampton, VI 23681-2199, NASA, Langley Research Center, USA

    Google Scholar 

  14. Chrupalla D, Berg S, Kärger L, Doreille M, Ludwig T, Jansen E, Rolfes R, Kling A (2011) A homogenization-based two-way multiscale approach for composite structures. In: Rolfes R, Jansen EL (eds) Proceedings of the 3rd ECCOMAS thematic conference on the mechanical response of composites, Hannover, Germany, pp 263–270

    Google Scholar 

  15. Dávila CG, Camanho PP, de Moura M (2001) Mixed-mode decohesion elements for analyses of proressive delamination. In: 19th AIAA applied aerodynamics conference

    Google Scholar 

  16. Degenhardt R, Kling A, Klein H, Hillger W, Goetting HC, Zimmermann R, Rohwer K (2007) Experiments on buckling and postbuckling of thin-walled CFRP structures using advanced measurement systems. Int J Struct Stab Dyn 7(2):337–358

    Article  Google Scholar 

  17. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  18. Faggiani A, Falzon BG (2007) Optimization strategy for minimizing damage in postbuckling stiffened panels. AIAA J 45(10):2520–2528

    Article  Google Scholar 

  19. Falzon BG, Stevens KA, Davies GO (2000) Postbuckling behaviour of a blade-stiffened composite panel loaded in uniaxial compression. Compos Part A 31:459–468

    Article  Google Scholar 

  20. Falzon BG, Davies GAO, Greenhalgh E (2001) Failure of thick-skinned stiffener runout sections loaded in uniaxial compression. Compos Struct 53:223–233

    Article  Google Scholar 

  21. Hallett SR, Wisnom MR (2006) Numerical investigation of progressive damage and the effect of layup in notched tensile tests. J Compos Mater 40(14):1229–1245

    Article  Google Scholar 

  22. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6:773–782

    Article  Google Scholar 

  23. Hinton MJ, Kaddour AS, Soden PD (2002) A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos Sci Technol 62:1725–1797

    Article  Google Scholar 

  24. Hühne S, Reinoso J, Jansen E, Rolfes R (2016) A two-way loose coupling procedure for investigating the buckling and damage behaviour of stiffened composite panels. Compos Struct 136:513–525

    Article  Google Scholar 

  25. Jiang WG, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69(9):1982–1995

    Article  Google Scholar 

  26. Jones RM (1998) Mechanics of composite materials. CRC Press, Boca Raton

    Google Scholar 

  27. Kaddour AS, Hinton MJ (2013) Maturity of 3D failure criteria for fibre-reinforced composites: comparison between theories and experiments: Part B of WWFE-II. J Compos Mater 47:925–966

    Article  Google Scholar 

  28. Kaddour AS, Hinton MJ, Soden PD (2004) A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos Sci Technol 64:449–476

    Article  Google Scholar 

  29. Kaddour AS, Hinton MJ, Smith PA, Li S (2013) Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. J Compos Mater 47(20–21):2427–2442

    Article  Google Scholar 

  30. Krueger R (2015) The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. Woodhead publishing series in composites science and engineering, pp 3–53

    Google Scholar 

  31. Labeas GN, Belesis SD, Diamantakos I, Tserpes KI (2012) Adaptative progressive damage modeling for large-scale composite structures. Int J Damage Mech 21(3):441–462

    Article  Google Scholar 

  32. Lauterbach S, Orifici AC, Wagner W, Balzani C, Abramovich H, Thomson R (2010) Damage sensitivity of axially loaded stringer-stiffened curved CFRP panels. Compos Sci Technol 70(2):240–248

    Article  Google Scholar 

  33. Linde P, Pleitner J, Boer H, Carmone C (2004) Modelling and simulation of fibre metal laminates. In: ABAQUS users’ conference, pp 421–439

    Google Scholar 

  34. Loehnert S, Belytschko T (2007) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Eng 71:1466–1482

    Article  MathSciNet  Google Scholar 

  35. Mao KM, Sun CT (1991) A refined global-local finite element analysis method. Int J Numer Methods Eng 32:29–43

    Article  Google Scholar 

  36. Mote CD (1971) Global-local finite element. Int J Numer Methods Eng 3:565–574

    Article  MathSciNet  Google Scholar 

  37. Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2:333–346

    Article  Google Scholar 

  38. Orifici AC, Ortiz I, Alberdi DZ, Thomson RS, Bayandor J (2008) Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels. Compos Sci Technol 68(15–16):3150–3160

    Article  Google Scholar 

  39. Reinoso J, Blázquez A, Estefani A, París F, Cañas J, Arévalo E, Cruz F (2012) Experimental and three-dimensional global-local finite element analysis of a composite component including degradation process at the interfaces. Compos Part B 43(4):1929–1942

    Article  Google Scholar 

  40. Riccio A, Raimondo A (2016) Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression. Compos Part B 94:139–151

    Article  Google Scholar 

  41. Riccio A, Raimondo A, Scaramuzzino F (2015) A robust numerical approach for the simulation of skin-stringer debonding growth in stiffened composite panels under compression. Compos Part B 71:131–142

    Article  Google Scholar 

  42. Rybicki EF, Kanninen MF (1997) A finite element calculation of stress intensity factors by modified crack closure integral. Eng Fract Mech 9:931–938

    Article  Google Scholar 

  43. Turon A, Camanho PP (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089

    Article  Google Scholar 

  44. Turon A, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  45. Wang JTS, Bigger SB (1984) Skin-stiffener interface stresses in composite stiffened panels. NASA Contractor Report 172261

    Google Scholar 

  46. Whitcomb JD (1991) Iterative global/local finite element analysis. Comput Struct 40(4):1027–1031

    Article  Google Scholar 

  47. Wisnom MR, Chang FK (2000) Modelling of splitting and delamination in notched cross-ply laminates. Compos Sci Technol 60(15):2849–2856

    Article  Google Scholar 

  48. Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73(13):1783–1796

    Article  Google Scholar 

  49. Yap JWH, Scott ML, Thomson RS, Hachenberg D (2002) The analysis of skin-to-stiffener debonding in composite aerospace structures. Compos Struct 57:425–435

    Article  Google Scholar 

  50. Zubillaga L, Turon A, Renart J, Costa J, Linde P (2015) An experimental study on matrix crack induced delamination in composite laminates. Compos Struct 127:10–17

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out using the computational facilities of the Institute of Structural Analysis at Leibniz University Hannover as well as computational facilities within the Advanced Computing Research Centre, University of Bristol - http://www.bris.ac.uk/acrc/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akterskaia, M., Jansen, E., Hallet, S.R., Weaver, P.M., Rolfes, R. (2019). Post-buckling Progressive Failure Analysis of Composite Panels Using a Two-Way Global-Local Coupling Approach Including Intralaminar Failure and Debonding. In: Petrolo, M. (eds) Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11969-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11969-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11968-3

  • Online ISBN: 978-3-030-11969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics