Skip to main content

Paneth Cell Physiology and Pathophysiology in Inflammatory Bowel Disease

  • Chapter
  • First Online:
  • 600 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Paneth cells, named after Joseph Paneth, are distinctive, mucosal cells responsible for secreting the antimicrobial alpha-defensin peptides as well as enzymes including lysozyme and phospholipase A2 that keep the intestinal crypts sterile. Physiologically, they play a key role in defensive mechanisms against intestinal luminal microbes and in the regulation of host innate immunity. Paneth cells derive from fast-cycling crypt base columnar cells, which are associated in crypt regeneration; they differentiate while migrating toward the crypt base, from which they are eventually cleared by phagocytosis. Paneth cells are mostly located within the ileum; in adults they occur normally in sporadic numbers in the caecum to transverse colon but have been reported more distally only in pathological conditions. Paneth cells found in the descending colon, sigmoid, and rectum are “metaplastic” because they are ectopically in an abnormal location. In pathological states, an increase in Paneth cells – known as Paneth cell hyperplasia – may occur in the proximal colon. Paneth cell metaplasia (PCM) has been most often described in inflammatory bowel disease (IBD), both ulcerative colitis (UC) and Crohn’s disease (CD). In adults, it is thought to be a sign of a long-standing colitis history: it correlates with disease duration, and it has been attributed to the effects of repair and regeneration. Guidelines for reporting gastrointestinal biopsies concurred that PCM was an indicator of chronic mucosal cell damage, though it was not included in the data set for IBD reporting as its diagnostic value was then undefined. Paneth cell metaplasia may as well be present in other pathological states. In neonates, PCs are increased in the regenerating bowel following necrotizing enterocolitis but are not seen in self-limiting infectious colitis. In this e-book chapter, we describe the distribution of Paneth cells in symptomatic patients with or without significant gastrointestinal pathology, compare the findings with newly diagnosed IBD, and evaluate the relation between PCM and histological features of chronic disease.

Author Contributions 

Amosy M’Koma – Invitation recipient for “Special Issue.” Original idea of the paper, formulation of the protocol, and contribution to data abstraction and analysis. Critical drafting, writing and revision of the manuscript, and data analysis. Carried out the literature search, selection, and validity assessment.

Billy R. Ballard – Critical reading of the manuscript and evaluation of the validity of the content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paneth J. Ueber die secernirenden Zellen des Dunndarm-Epithels. Arch Mikroskop Anat. 1888;31:113–91.

    Article  Google Scholar 

  2. Paterson JC, Watson SH. Paneth cell metaplasia in ulcerative colitis. Am J Pathol. 1961;38:243–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Erlandsen SL, Parsons JA, Taylor TD. Ultrastructural immunocytochemical localization of lysozyme in the Paneth cells of man. J Histochem Cytochem. 1974;22:401–13.

    Article  CAS  PubMed  Google Scholar 

  4. Kiyohara H, Egami H, Shibata Y, Murata K, Ohshima S, Ogawa M. Light microscopic immunohistochemical analysis of the distribution of group II phospholipase A2 in human digestive organs. J Histochem Cytochem. 1992;40:1659–64.

    Article  CAS  PubMed  Google Scholar 

  5. Jones DE, Bevins CL. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 1993;315:187–92.

    Article  CAS  PubMed  Google Scholar 

  6. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.

    Article  CAS  PubMed  Google Scholar 

  7. Gersemann M, Wehkamp J, Stange EF. Innate immune dysfunction in inflammatory bowel disease. J Intern Med. 2012;271:421–8.

    Article  CAS  PubMed  Google Scholar 

  8. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007;19:70–83.

    Article  CAS  PubMed  Google Scholar 

  9. Mathan M, Hughes J, Whitehead R. The morphogenesis of the human Paneth cell. An immunocytochemical ultrastructural study. Histochemistry. 1987;87:91–6.

    Article  CAS  PubMed  Google Scholar 

  10. Thomson AB, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: part I. World J Gastroenterol. 2012;18:3336–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tanaka M, Saito H, Kusumi T, et al. Spatial distribution and histogenesis of colorectal Paneth cell metaplasia in idiopathic inflammatory bowel disease. J Gastroenterol Hepatol. 2001;16:1353–9.

    Article  CAS  PubMed  Google Scholar 

  12. Symonds DA. Paneth cell metaplasia in diseases of the colon and rectum. Arch Pathol. 1974;97:343–7.

    CAS  PubMed  Google Scholar 

  13. Mitsuhashi J, Mikami T, Saigenji K, Okayasu I. Significant correlation of morphological remodeling in ulcerative colitis with disease duration and between elevated p53 and p21 expression in rectal mucosa and neoplastic development. Pathol Int. 2005;55:113–21.

    Article  PubMed  Google Scholar 

  14. Jenkins D, Balsitis M, Gallivan S, et al. Guidelines for the initial biopsy diagnosis of suspected chronic idiopathic inflammatory bowel disease. The British Society of Gastroenterology Initiative. J Clin Pathol. 1997;50:93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puiman PJ, Burger-Van Paassen N, Schaart MW, et al. Paneth cell hyperplasia and metaplasia in necrotizing enterocolitis. Pediatr Res. 2011;69:217–23.

    Article  CAS  PubMed  Google Scholar 

  16. Schumacher G. First attack of inflammatory bowel disease and infectious colitis. A clinical, histological and microbiological study with special reference to early diagnosis. Scand J Gastroenterol Suppl. 1993;198:1–24.

    CAS  PubMed  Google Scholar 

  17. Dundas SA, Dutton J, Skipworth P. Reliability of rectal biopsy in distinguishing between chronic inflammatory bowel disease and acute self-limiting colitis. Histopathology. 1997;31:60–6.

    Article  CAS  PubMed  Google Scholar 

  18. Glickman JN, Bousvaros A, Farraye FA, et al. Pediatric patients with untreated ulcerative colitis may present initially with unusual morphologic findings. Am J Surg Pathol. 2004;28:190–7.

    Article  PubMed  Google Scholar 

  19. Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol. 2017;8:150–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Williams AD, Korolkova OY, Sakwe AM, et al. Human alpha defensin 5 is a candidate biomarker to delineate inflammatory bowel disease. PLoS One. 2017;12:e0179710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McElroy SJ, Underwood MA, Sherman MP. Paneth cells and necrotizing enterocolitis: a novel hypothesis for disease pathogenesis. Neonatology. 2013;103:10–20.

    Article  CAS  PubMed  Google Scholar 

  22. Joo M, Shahsafaei A, Odze RD. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the Apc/beta-catenin/Tcf pathway. Hum Pathol. 2009;40:872–80.

    Article  CAS  PubMed  Google Scholar 

  23. Perminow G, Beisner J, Koslowski M, et al. Defective paneth cell-mediated host defense in pediatric ileal Crohn’s disease. Am J Gastroenterol. 2010;105:452–9.

    Article  PubMed  Google Scholar 

  24. Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102:18129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wehkamp J, Stange EF. Paneth’s disease. J Crohn’s Colitis. 2010;4:523–31.

    Article  Google Scholar 

  26. Wehkamp J, Wang G, Kubler I, et al. The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol. 2007;179:3109–18.

    Article  CAS  PubMed  Google Scholar 

  27. Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: a critical regulator of Ileal microbiota and Crohn’s disease. Front Immunol. 2016;7:367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol. 2017;52:45–56.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–53.

    Article  CAS  PubMed  Google Scholar 

  30. Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.

    Article  CAS  PubMed  Google Scholar 

  31. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.

    Article  CAS  PubMed  Google Scholar 

  32. Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell Mol Gastroenterol Hepatol. 2015;1:28–40.

    Article  PubMed  Google Scholar 

  33. Nakamura K, Sakuragi N, Takakuwa A, Ayabe T. Paneth cell alpha-defensins and enteric microbiota in health and disease. Biosci Microbiota Food Health. 2016;35:57–67.

    Article  CAS  PubMed  Google Scholar 

  34. Durand A, Donahue B, Peignon G, et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A. 2012;109:8965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coretti L, Natale A, Cuomo M, et al. The interplay between defensins and microbiota in Crohn’s disease. Mediat Inflamm. 2017;2017:8392523.

    Article  CAS  Google Scholar 

  36. Rubio CA. Lysozyme-rich mucus metaplasia in duodenal crypts supersedes Paneth cells in celiac disease. Virchows Arch. 2011;459:339–46.

    Article  PubMed  Google Scholar 

  37. van Es JH, Jay P, Gregorieff A, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol. 2005;7:381–6.

    Article  PubMed  CAS  Google Scholar 

  38. Okubo T, Hogan BL. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol. 2004;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Simmonds N, Furman M, Karanika E, Phillips A, Bates AW. Paneth cell metaplasia in newly diagnosed inflammatory bowel disease in children. BMC Gastroenterol. 2014;14:93.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ganz T. Defensins and host defense. Science. 1999;286:420–1.

    Article  CAS  PubMed  Google Scholar 

  41. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20.

    Article  CAS  PubMed  Google Scholar 

  42. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008;105:20858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113–7.

    Article  CAS  PubMed  Google Scholar 

  44. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol. 2000;1:113–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ouellette AJ. Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Gastroenterol. 2004;18:405–19.

    Article  CAS  PubMed  Google Scholar 

  46. Kaemmerer E, Plum P, Klaus C, et al. Fatty acid binding receptors in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol. 2010;1:147–53.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuwahara A. Contributions of colonic short-chain fatty acid receptors in energy homeostasis. Front Endocrinol (Lausanne). 2014;5:144.

    Article  Google Scholar 

  48. Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ. Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J Biol Chem. 2002;277:3793–800.

    Article  CAS  PubMed  Google Scholar 

  49. Ouellette AJ. Paneth cell alpha-defensin synthesis and function. Curr Top Microbiol Immunol. 2006;306:1–25.

    CAS  PubMed  Google Scholar 

  50. Wong JH, Xia L, Ng TB. A review of defensins of diverse origins. Curr Protein Pept Sci. 2007;8:446–59.

    Article  CAS  PubMed  Google Scholar 

  51. Shirafuji Y, Tanabe H, Satchell DP, Henschen-Edman A, Wilson CL, Ouellette AJ. Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7. J Biol Chem. 2003;278:7910–9.

    Article  CAS  PubMed  Google Scholar 

  52. Weeks CS, Tanabe H, Cummings JE, et al. Matrix metalloproteinase-7 activation of mouse paneth cell pro-alpha-defensins: SER43 down arrow ILE44 proteolysis enables membrane-disruptive activity. J Biol Chem. 2006;281:28932–42.

    Article  CAS  PubMed  Google Scholar 

  53. Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11:76–83.

    Article  CAS  PubMed  Google Scholar 

  54. Ghosh D, Porter E, Shen B, et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 2002;3:583–90.

    Article  CAS  PubMed  Google Scholar 

  55. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature. 2003;422:522–6.

    Article  CAS  PubMed  Google Scholar 

  56. Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res. 2012;22:1107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol. 2013;25:342–51.

    Article  CAS  PubMed  Google Scholar 

  58. Schnupf P, Gaboriau-Routhiau V, Gros M, et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature. 2015;520:99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karlsson J, Putsep K, Chu H, Kays RJ, Bevins CL, Andersson M. Regional variations in Paneth cell antimicrobial peptide expression along the mouse intestinal tract. BMC Immunol. 2008;9:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chu H, Pazgier M, Jung G, et al. Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 2012;337:477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ouellette AJ, Selsted ME. Immunology. HD6 defensin nanonets. Science. 2012;337:420–1.

    Article  PubMed  Google Scholar 

  62. Bevins CL. Innate immune functions of alpha-defensins in the small intestine. Dig Dis. 2013;31:299–304.

    Article  PubMed  Google Scholar 

  63. Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313:1126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280:22–35.

    Article  CAS  PubMed  Google Scholar 

  65. Kopp ZA, Jain U, Van Limbergen J, Stadnyk AW. Do antimicrobial peptides and complement collaborate in the intestinal mucosa? Front Immunol. 2015;6:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Adolph TE, Tomczak MF, Niederreiter L, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503:272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haapamaki MM, Gronroos JM, Nurmi H, Alanen K, Nevalainen TJ. Gene expression of group II phospholipase A2 in intestine in Crohn's disease. Am J Gastroenterol. 1999;94:713–20.

    CAS  PubMed  Google Scholar 

  69. Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol. 2004;75:49–58.

    Article  CAS  PubMed  Google Scholar 

  70. Shanahan MT, Carroll IM, Grossniklaus E, et al. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut. 2014;63:903–10.

    Article  CAS  PubMed  Google Scholar 

  71. Machado LR, Ottolini B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol. 2015;6:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cobo ER, Chadee K. Antimicrobial human beta-defensins in the Colon and Their role in infectious and non-infectious diseases. Pathogens. 2013;2:177–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML. beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin Exp Immunol. 2004;137:379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wehkamp J, Fellermann K, Herrlinger KR, Bevins CL, Stange EF. Mechanisms of disease: defensins in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:406–15.

    Article  CAS  PubMed  Google Scholar 

  75. Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357:1925–8.

    Article  CAS  PubMed  Google Scholar 

  76. Lala S, Ogura Y, Osborne C, et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003;125:47–57.

    Article  CAS  PubMed  Google Scholar 

  77. Rosenstiel P, Fantini M, Brautigam K, et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124:1001–9.

    Article  CAS  PubMed  Google Scholar 

  78. Koslowski MJ, Kubler I, Chamaillard M, et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease. PLoS One. 2009;4:e4496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    Article  CAS  PubMed  Google Scholar 

  80. Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134:743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Menard S, Forster V, Lotz M, et al. Developmental switch of intestinal antimicrobial peptide expression. J Exp Med. 2008;205:183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park HS, Goodlad RA, Wright NA. Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol. 1995;147:1416–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Graham TA, Humphries A, Sanders T, et al. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology. 2011;140:1241–50 e1–9.

    Article  CAS  PubMed  Google Scholar 

  84. Humphries A, Cereser B, Gay LJ, et al. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci U S A. 2013;110:E2490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujimitsu Y, Nakanishi H, Inada K, et al. Development of aberrant crypt foci involves a fission mechanism as revealed by isolation of aberrant crypts. Jpn J Cancer Res. 1996;87:1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Langlands AJ, Almet AA, Appleton PL, Newton IP, Osborne JM, Nathke IS. Paneth cell-rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche. PLoS Biol. 2016;14:e1002491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pin C, Parker A, Gunning AP, et al. An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integr Biol (Camb). 2015;7:213–28.

    Article  Google Scholar 

  88. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

  89. Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149–59.

    Article  CAS  PubMed  Google Scholar 

  90. Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology. 2012;143:1518–29 e7.

    Article  CAS  PubMed  Google Scholar 

Download references

Financial Support

This work was supported by Meharry Medical College Schools of Medicine (SOM) and Graduate Studies and Research (SOGRS) and Vanderbilt Institute for Clinical and Translational Research (VICTR).

Potential Competing Interest Statement

Amosy E. M’Koma has received honoraria fees for Educational Presentation from Lipscomb University. Further, he receives institutional grants from Meharry Medical College Schools of Medicine (SOM) and Graduate Studies and Research (SOGRS) and Vanderbilt Institute for Clinical and Translational Research (VICTR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amosy E. M’Koma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballard, B.R., M’Koma, A.E. (2019). Paneth Cell Physiology and Pathophysiology in Inflammatory Bowel Disease. In: Gazouli, M., Theodoropoulos, G. (eds) Digestive System Diseases. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11965-2_9

Download citation

Publish with us

Policies and ethics