Paneth Cell Physiology and Pathophysiology in Inflammatory Bowel Disease

  • Billy R. Ballard
  • Amosy E. M’KomaEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Paneth cells, named after Joseph Paneth, are distinctive, mucosal cells responsible for secreting the antimicrobial alpha-defensin peptides as well as enzymes including lysozyme and phospholipase A2 that keep the intestinal crypts sterile. Physiologically, they play a key role in defensive mechanisms against intestinal luminal microbes and in the regulation of host innate immunity. Paneth cells derive from fast-cycling crypt base columnar cells, which are associated in crypt regeneration; they differentiate while migrating toward the crypt base, from which they are eventually cleared by phagocytosis. Paneth cells are mostly located within the ileum; in adults they occur normally in sporadic numbers in the caecum to transverse colon but have been reported more distally only in pathological conditions. Paneth cells found in the descending colon, sigmoid, and rectum are “metaplastic” because they are ectopically in an abnormal location. In pathological states, an increase in Paneth cells – known as Paneth cell hyperplasia – may occur in the proximal colon. Paneth cell metaplasia (PCM) has been most often described in inflammatory bowel disease (IBD), both ulcerative colitis (UC) and Crohn’s disease (CD). In adults, it is thought to be a sign of a long-standing colitis history: it correlates with disease duration, and it has been attributed to the effects of repair and regeneration. Guidelines for reporting gastrointestinal biopsies concurred that PCM was an indicator of chronic mucosal cell damage, though it was not included in the data set for IBD reporting as its diagnostic value was then undefined. Paneth cell metaplasia may as well be present in other pathological states. In neonates, PCs are increased in the regenerating bowel following necrotizing enterocolitis but are not seen in self-limiting infectious colitis. In this e-book chapter, we describe the distribution of Paneth cells in symptomatic patients with or without significant gastrointestinal pathology, compare the findings with newly diagnosed IBD, and evaluate the relation between PCM and histological features of chronic disease.


Financial Support

This work was supported by Meharry Medical College Schools of Medicine (SOM) and Graduate Studies and Research (SOGRS) and Vanderbilt Institute for Clinical and Translational Research (VICTR).

Potential Competing Interest Statement

Amosy E. M’Koma has received honoraria fees for Educational Presentation from Lipscomb University. Further, he receives institutional grants from Meharry Medical College Schools of Medicine (SOM) and Graduate Studies and Research (SOGRS) and Vanderbilt Institute for Clinical and Translational Research (VICTR).


  1. 1.
    Paneth J. Ueber die secernirenden Zellen des Dunndarm-Epithels. Arch Mikroskop Anat. 1888;31:113–91.CrossRefGoogle Scholar
  2. 2.
    Paterson JC, Watson SH. Paneth cell metaplasia in ulcerative colitis. Am J Pathol. 1961;38:243–9.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Erlandsen SL, Parsons JA, Taylor TD. Ultrastructural immunocytochemical localization of lysozyme in the Paneth cells of man. J Histochem Cytochem. 1974;22:401–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Kiyohara H, Egami H, Shibata Y, Murata K, Ohshima S, Ogawa M. Light microscopic immunohistochemical analysis of the distribution of group II phospholipase A2 in human digestive organs. J Histochem Cytochem. 1992;40:1659–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones DE, Bevins CL. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 1993;315:187–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Gersemann M, Wehkamp J, Stange EF. Innate immune dysfunction in inflammatory bowel disease. J Intern Med. 2012;271:421–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007;19:70–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Mathan M, Hughes J, Whitehead R. The morphogenesis of the human Paneth cell. An immunocytochemical ultrastructural study. Histochemistry. 1987;87:91–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Thomson AB, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: part I. World J Gastroenterol. 2012;18:3336–52.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tanaka M, Saito H, Kusumi T, et al. Spatial distribution and histogenesis of colorectal Paneth cell metaplasia in idiopathic inflammatory bowel disease. J Gastroenterol Hepatol. 2001;16:1353–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Symonds DA. Paneth cell metaplasia in diseases of the colon and rectum. Arch Pathol. 1974;97:343–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mitsuhashi J, Mikami T, Saigenji K, Okayasu I. Significant correlation of morphological remodeling in ulcerative colitis with disease duration and between elevated p53 and p21 expression in rectal mucosa and neoplastic development. Pathol Int. 2005;55:113–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkins D, Balsitis M, Gallivan S, et al. Guidelines for the initial biopsy diagnosis of suspected chronic idiopathic inflammatory bowel disease. The British Society of Gastroenterology Initiative. J Clin Pathol. 1997;50:93–105.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Puiman PJ, Burger-Van Paassen N, Schaart MW, et al. Paneth cell hyperplasia and metaplasia in necrotizing enterocolitis. Pediatr Res. 2011;69:217–23.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Schumacher G. First attack of inflammatory bowel disease and infectious colitis. A clinical, histological and microbiological study with special reference to early diagnosis. Scand J Gastroenterol Suppl. 1993;198:1–24.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Dundas SA, Dutton J, Skipworth P. Reliability of rectal biopsy in distinguishing between chronic inflammatory bowel disease and acute self-limiting colitis. Histopathology. 1997;31:60–6.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Glickman JN, Bousvaros A, Farraye FA, et al. Pediatric patients with untreated ulcerative colitis may present initially with unusual morphologic findings. Am J Surg Pathol. 2004;28:190–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol. 2017;8:150–60.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Williams AD, Korolkova OY, Sakwe AM, et al. Human alpha defensin 5 is a candidate biomarker to delineate inflammatory bowel disease. PLoS One. 2017;12:e0179710.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    McElroy SJ, Underwood MA, Sherman MP. Paneth cells and necrotizing enterocolitis: a novel hypothesis for disease pathogenesis. Neonatology. 2013;103:10–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Joo M, Shahsafaei A, Odze RD. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the Apc/beta-catenin/Tcf pathway. Hum Pathol. 2009;40:872–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Perminow G, Beisner J, Koslowski M, et al. Defective paneth cell-mediated host defense in pediatric ileal Crohn’s disease. Am J Gastroenterol. 2010;105:452–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102:18129–34.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wehkamp J, Stange EF. Paneth’s disease. J Crohn’s Colitis. 2010;4:523–31.CrossRefGoogle Scholar
  26. 26.
    Wehkamp J, Wang G, Kubler I, et al. The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol. 2007;179:3109–18.PubMedCrossRefGoogle Scholar
  27. 27.
    Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: a critical regulator of Ileal microbiota and Crohn’s disease. Front Immunol. 2016;7:367.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol. 2017;52:45–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.PubMedCrossRefGoogle Scholar
  31. 31.
    Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell Mol Gastroenterol Hepatol. 2015;1:28–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Nakamura K, Sakuragi N, Takakuwa A, Ayabe T. Paneth cell alpha-defensins and enteric microbiota in health and disease. Biosci Microbiota Food Health. 2016;35:57–67.PubMedCrossRefGoogle Scholar
  34. 34.
    Durand A, Donahue B, Peignon G, et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A. 2012;109:8965–70.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Coretti L, Natale A, Cuomo M, et al. The interplay between defensins and microbiota in Crohn’s disease. Mediat Inflamm. 2017;2017:8392523.CrossRefGoogle Scholar
  36. 36.
    Rubio CA. Lysozyme-rich mucus metaplasia in duodenal crypts supersedes Paneth cells in celiac disease. Virchows Arch. 2011;459:339–46.PubMedCrossRefGoogle Scholar
  37. 37.
    van Es JH, Jay P, Gregorieff A, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol. 2005;7:381–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Okubo T, Hogan BL. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol. 2004;3:11.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Simmonds N, Furman M, Karanika E, Phillips A, Bates AW. Paneth cell metaplasia in newly diagnosed inflammatory bowel disease in children. BMC Gastroenterol. 2014;14:93.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ganz T. Defensins and host defense. Science. 1999;286:420–1.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008;105:20858–63.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol. 2000;1:113–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Ouellette AJ. Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Gastroenterol. 2004;18:405–19.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaemmerer E, Plum P, Klaus C, et al. Fatty acid binding receptors in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol. 2010;1:147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kuwahara A. Contributions of colonic short-chain fatty acid receptors in energy homeostasis. Front Endocrinol (Lausanne). 2014;5:144.CrossRefGoogle Scholar
  48. 48.
    Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ. Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J Biol Chem. 2002;277:3793–800.PubMedCrossRefGoogle Scholar
  49. 49.
    Ouellette AJ. Paneth cell alpha-defensin synthesis and function. Curr Top Microbiol Immunol. 2006;306:1–25.PubMedGoogle Scholar
  50. 50.
    Wong JH, Xia L, Ng TB. A review of defensins of diverse origins. Curr Protein Pept Sci. 2007;8:446–59.PubMedCrossRefGoogle Scholar
  51. 51.
    Shirafuji Y, Tanabe H, Satchell DP, Henschen-Edman A, Wilson CL, Ouellette AJ. Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7. J Biol Chem. 2003;278:7910–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Weeks CS, Tanabe H, Cummings JE, et al. Matrix metalloproteinase-7 activation of mouse paneth cell pro-alpha-defensins: SER43 down arrow ILE44 proteolysis enables membrane-disruptive activity. J Biol Chem. 2006;281:28932–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11:76–83.PubMedCrossRefGoogle Scholar
  54. 54.
    Ghosh D, Porter E, Shen B, et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 2002;3:583–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature. 2003;422:522–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res. 2012;22:1107–19.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol. 2013;25:342–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Schnupf P, Gaboriau-Routhiau V, Gros M, et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature. 2015;520:99–103.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Karlsson J, Putsep K, Chu H, Kays RJ, Bevins CL, Andersson M. Regional variations in Paneth cell antimicrobial peptide expression along the mouse intestinal tract. BMC Immunol. 2008;9:37.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chu H, Pazgier M, Jung G, et al. Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 2012;337:477–81.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ouellette AJ, Selsted ME. Immunology. HD6 defensin nanonets. Science. 2012;337:420–1.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bevins CL. Innate immune functions of alpha-defensins in the small intestine. Dig Dis. 2013;31:299–304.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313:1126–30.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280:22–35.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kopp ZA, Jain U, Van Limbergen J, Stadnyk AW. Do antimicrobial peptides and complement collaborate in the intestinal mucosa? Front Immunol. 2015;6:17.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Adolph TE, Tomczak MF, Niederreiter L, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503:272–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Haapamaki MM, Gronroos JM, Nurmi H, Alanen K, Nevalainen TJ. Gene expression of group II phospholipase A2 in intestine in Crohn's disease. Am J Gastroenterol. 1999;94:713–20.PubMedGoogle Scholar
  69. 69.
    Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol. 2004;75:49–58.PubMedCrossRefGoogle Scholar
  70. 70.
    Shanahan MT, Carroll IM, Grossniklaus E, et al. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut. 2014;63:903–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Machado LR, Ottolini B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol. 2015;6:115.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cobo ER, Chadee K. Antimicrobial human beta-defensins in the Colon and Their role in infectious and non-infectious diseases. Pathogens. 2013;2:177–92.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML. beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin Exp Immunol. 2004;137:379–85.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wehkamp J, Fellermann K, Herrlinger KR, Bevins CL, Stange EF. Mechanisms of disease: defensins in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:406–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357:1925–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Lala S, Ogura Y, Osborne C, et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003;125:47–57.PubMedCrossRefGoogle Scholar
  77. 77.
    Rosenstiel P, Fantini M, Brautigam K, et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124:1001–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Koslowski MJ, Kubler I, Chamaillard M, et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease. PLoS One. 2009;4:e4496.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134:743–56.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Menard S, Forster V, Lotz M, et al. Developmental switch of intestinal antimicrobial peptide expression. J Exp Med. 2008;205:183–93.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Park HS, Goodlad RA, Wright NA. Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol. 1995;147:1416–27.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Graham TA, Humphries A, Sanders T, et al. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology. 2011;140:1241–50 e1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Humphries A, Cereser B, Gay LJ, et al. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci U S A. 2013;110:E2490–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Fujimitsu Y, Nakanishi H, Inada K, et al. Development of aberrant crypt foci involves a fission mechanism as revealed by isolation of aberrant crypts. Jpn J Cancer Res. 1996;87:1199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Langlands AJ, Almet AA, Appleton PL, Newton IP, Osborne JM, Nathke IS. Paneth cell-rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche. PLoS Biol. 2016;14:e1002491.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pin C, Parker A, Gunning AP, et al. An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integr Biol (Camb). 2015;7:213–28.CrossRefGoogle Scholar
  88. 88.
    Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149–59.PubMedCrossRefGoogle Scholar
  90. 90.
    Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology. 2012;143:1518–29 e7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology, Anatomy, and Cell BiologyMeharry Medical College School of MedicineNashvilleUSA
  2. 2.Department of Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleUSA
  3. 3.Pathology SectionAmerican (National) Medical AssociationSilver SpringUSA
  4. 4.Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical College School of MedicineNashvilleUSA
  5. 5.Department of Surgery, Colon and Rectal SurgeryVanderbilt University School of MedicineNashvilleUSA
  6. 6.The American Society of Colon and Rectal Surgeons (ASCRS)Arlington HeightsUSA
  7. 7.The American Gastroenterological Association (AGA)BethesdaUSA
  8. 8.Vanderbilt-Ingram Cancer Center (VICC)Vanderbilt University Medical CenterNashvilleUSA

Personalised recommendations