Skip to main content

Architectured Polymeric Materials Produced by Additive Manufacturing

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 282))

Abstract

Polymers play an important role in our everyday life. With the advent of additive manufacturing (AM) technologies, the design and manufacture of new polymer-based composite materials has experienced a significant boost. AM enables precise deposition of printable material(s) with micro scale accuracy to build up a desired structure in three dimensions in a layer-by-layer fashion. In this chapter, recent advances in the use of additive manufacturing for the design of architectured polymer-based materials is discussed. A compendium of the existing AM methods is presented, followed by an overview of applications of AM technology to fabrication of polymer-based materials with engineered inner architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Weiner, H.D. Wagner, The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28(1), 271–298 (1998)

    Article  CAS  Google Scholar 

  2. P. Fratzl et al., Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)

    Article  CAS  Google Scholar 

  3. J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)

    Google Scholar 

  4. P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater Sci. 52(8), 1263–1334 (2007)

    Article  CAS  Google Scholar 

  5. B. Pokroy, V. Demensky, E. Zolotoyabko, Nacre in mollusk shells as a multilayered structure with strain gradient. Adv. Funct. Mater. 19(7), 1054–1059 (2009)

    Article  CAS  Google Scholar 

  6. M.A. Meyers et al., Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1(1), 76–85 (2008)

    Article  Google Scholar 

  7. J. Aizenberg et al., Biological glass fibers: correlation between optical and structural properties. Proc. Natl. Acad. Sci. U.S.A. 101(10), 3358 (2004)

    Article  CAS  Google Scholar 

  8. R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–822 (2011)

    Article  CAS  Google Scholar 

  9. M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)

    Article  CAS  Google Scholar 

  10. Y.J.M. Brechet, Chapter 1 Architectured materials: an alternative to microstructure control for structural materials design? A possible playground for bio-inspiration? in Materials Design Inspired by Nature: Function Through Inner Architecture (The Royal Society of Chemistry, 2013), pp. 1–16

    Google Scholar 

  11. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2015)

    Book  Google Scholar 

  12. R. D’Aveni, The 3-D printing revolution. Harvard Bus. Rev. 93(5), 40–48 (2015)

    Google Scholar 

  13. R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540(7633), 371–378 (2016)

    Article  CAS  Google Scholar 

  14. C.W. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography (USA, 1986)

    Google Scholar 

  15. R. Raman, R. Bashir, Chapter 6—Stereolithographic 3D bioprinting for biomedical applications, in Essentials of 3D Biofabrication and Translation, ed. by A. Atala, J.J. Yoo (Academic Press, Boston, 2015), pp. 89–121

    Google Scholar 

  16. J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32(1), 54–64 (2016)

    Article  CAS  Google Scholar 

  17. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)

    Article  CAS  Google Scholar 

  18. J.R. Tumbleston et al., Continuous liquid interface production of 3D objects. Science 347(6228), 1349 (2015)

    Article  CAS  Google Scholar 

  19. C. Heller et al., Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. Part A Polym. Chem. 47(24), 6941–6954 (2009)

    Article  CAS  Google Scholar 

  20. Materialise, Materialise’s Mammoth Stereolithography—3D Printing on a Grand Scale! February 28, 2014 [cited 2018 2.07.2018]. Available from https://www.materialise.com/en/blog/materialises-mammoth-stereolithography-3d-printing-on-a-grand-scale

  21. B.H. Cumpston et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51 (1999)

    Article  CAS  Google Scholar 

  22. M. Farsari et al., Three-dimensional biomolecule patterning. Appl. Surf. Sci. 253(19), 8115–8118 (2007)

    Article  CAS  Google Scholar 

  23. L.R. Meza et al., Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112, 11502–11507 (2015)

    Article  CAS  Google Scholar 

  24. X. Zheng et al., Multiscale metallic metamaterials. Nat. Mater. 15(10), 1100–1106 (2016)

    Article  CAS  Google Scholar 

  25. F. Kotz et al., Three-dimensional printing of transparent fused silica glass. Nature 544(7650), 337–339 (2017)

    Article  CAS  Google Scholar 

  26. J.H. Sandoval, B.W. Ryan, Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyping J. 12(5), 292–303 (2006)

    Article  Google Scholar 

  27. L. Dong et al., 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43), 434003 (2015)

    Article  CAS  Google Scholar 

  28. Y. Duan et al., Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyping J. 17(4), 247–252 (2011)

    Article  Google Scholar 

  29. J.-W. Choi, E. MacDonald, R. Wicker, Multi-material microstereolithography. Int. J. Adv. Manuf. Technol. 49(5), 543–551 (2010)

    Article  Google Scholar 

  30. J.-W. Choi, H.-C. Kim, R. Wicker, Multi-material stereolithography. J. Mater. Process. Technol. 211(3), 318–328 (2011)

    Article  CAS  Google Scholar 

  31. K. Arcaute, B. Mann, R. Wicker, Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6(3), 1047–1054 (2010)

    Article  CAS  Google Scholar 

  32. R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers. Prog. Mater Sci. 57(2), 229–267 (2012)

    Article  CAS  Google Scholar 

  33. J.P. Kruth et al., Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 56(2), 730–759 (2007)

    Article  Google Scholar 

  34. H. Chung, S. Das, Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng. A 487(1), 251–257 (2008)

    Article  CAS  Google Scholar 

  35. S.R. Athreya, K. Kalaitzidou, S. Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater. Sci. Eng. A 527(10), 2637–2642 (2010)

    Article  CAS  Google Scholar 

  36. H. Chung, S. Das, Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)

    Article  CAS  Google Scholar 

  37. H.C. Kim, H.T. Hahn, Y.S. Yang, Synthesis of PA12/functionalized GNP nanocomposite powders for the selective laser sintering process. J. Compos. Mater. 47(4), 501–509 (2012)

    Article  CAS  Google Scholar 

  38. H. Zheng et al., Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS. Mater. Lett. 60(9), 1219–1223 (2006)

    Article  CAS  Google Scholar 

  39. X. Wang et al., 3D printing of polymer matrix composites: a review and prospective. Compos. B Eng. 110, 442–458 (2017)

    Article  CAS  Google Scholar 

  40. E. Kroner, E. Arzt, Gecko Adhesion, in Encyclopedia of Nanotechnology, ed. by B. Bhushan (Springer Netherlands, 2012), pp. 934–943

    Google Scholar 

  41. B.N. Turner, S.A. Gold, A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping J. 21(3), 250–261 (2015)

    Article  Google Scholar 

  42. B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J. 20(3), 192–204 (2014)

    Article  Google Scholar 

  43. W. Zhong et al., Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 301(2), 125–130 (2001)

    Article  Google Scholar 

  44. H.L. Tekinalp et al., Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)

    Article  CAS  Google Scholar 

  45. F. Ning et al., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 80, 369–378 (2015)

    Article  CAS  Google Scholar 

  46. X. Tian et al., Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 88, 198–205 (2016)

    Article  CAS  Google Scholar 

  47. X. Wei et al., 3D printable graphene composite. Sci. Rep. 5, 11181 (2015)

    Article  Google Scholar 

  48. Y. Chuncheng et al., 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping J. 23(1), 209–215 (2017)

    Article  Google Scholar 

  49. G.W. Melenka et al., Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 153, 866–875 (2016)

    Article  Google Scholar 

  50. R. Matsuzaki et al., Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016)

    Article  CAS  Google Scholar 

  51. M. Nikzad, S.H. Masood, I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32(6), 3448–3456 (2011)

    Article  CAS  Google Scholar 

  52. A.A. Zadpoor, J. Malda, Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 45(1), 1–11 (2017)

    Article  Google Scholar 

  53. F.S. Senatov et al., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 57, 139–148 (2016)

    Article  CAS  Google Scholar 

  54. Q. Zhang et al., Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. 5, 8936 (2015)

    Article  CAS  Google Scholar 

  55. Z.X. Khoo et al., 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyping 10(3), 103–122 (2015)

    Article  Google Scholar 

  56. T. van Manen, S. Janbaz, A.A. Zadpoor, Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horiz. 4(6), 1064–1069 (2017)

    Article  Google Scholar 

  57. E. David et al., Multi-material, multi-technology FDM: exploring build process variations. Rapid Prototyping J. 20(3), 236–244 (2014)

    Article  Google Scholar 

  58. N. Way, Additive Manufacturing of Multi-Material Composite Flexible Structures in Department of Materials Science and Enginering (Monash University, Clayton, 2017)

    Google Scholar 

  59. J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16(17), 2193–2204 (2006)

    Article  CAS  Google Scholar 

  60. A. Sydney Gladman et al., Biomimetic 4D printing. Nat. Mater. 15, 413 (2016)

    Article  CAS  Google Scholar 

  61. Y. Kim et al., Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)

    Article  CAS  Google Scholar 

  62. A. Clausen et al., Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27(37), 5523–5527 (2015)

    Article  CAS  Google Scholar 

  63. S. Shan et al., Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27(29), 4296–4301 (2015)

    Article  CAS  Google Scholar 

  64. T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. 112(40), 12293–12298 (2015)

    Article  CAS  Google Scholar 

  65. B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2014)

    Article  CAS  Google Scholar 

  66. J.J. Martin, B.E. Fiore, R.M. Erb, Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6, 8641 (2015)

    Article  CAS  Google Scholar 

  67. A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45(2), 359–376 (2016)

    Article  CAS  Google Scholar 

  68. J.R. Raney et al., Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. (2018)

    Google Scholar 

  69. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)

    Article  CAS  Google Scholar 

  70. L.S. Dimas et al., Tough composites inspired by mineralized natural materials: computation, 3d printing, and testing. Adv. Funct. Mater. 23(36), 4629–4638 (2013)

    Article  CAS  Google Scholar 

  71. L.S. Dimas, M.J. Buehler, Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter 10(25), 4436–4442 (2014)

    Article  CAS  Google Scholar 

  72. E. Lin et al., 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. J. Mech. Phys. Solids 73, 166–182 (2014)

    Article  Google Scholar 

  73. P. Zhang, M.A. Heyne, A.C. To, Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing. J. Mech. Phys. Solids 83, 285–300 (2015)

    Article  CAS  Google Scholar 

  74. V. Slesarenko, N. Kazarinov, S. Rudykh, Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings. Smart Mater. Struct. 26(3), 035053 (2017)

    Article  Google Scholar 

  75. R. Mirzaeifar et al., Defect-tolerant bioinspired hierarchical composites: simulation and experiment. ACS Biomater. Sci. Eng. 1(5), 295–304 (2015)

    Article  CAS  Google Scholar 

  76. F. Libonati et al., Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18(8), 1354–1363 (2016)

    Article  CAS  Google Scholar 

  77. L. Guiducci et al., Honeycomb actuators inspired by the unfolding of ice plant seed capsules. PLoS ONE 11(11), e0163506 (2016)

    Article  CAS  Google Scholar 

  78. L. Guiducci et al., The geometric design and fabrication of actuating cellular structures. Adv. Mater. Interfaces 2(11), 1–6 (2015)

    Article  Google Scholar 

  79. D. Raviv et al., Active printed materials for complex self-evolving deformations. Sci. Rep. 4, 7422 (2014)

    Article  CAS  Google Scholar 

  80. L. Wen, J.C. Weaver, G.V. Lauder, Biomimetic shark skin: design, fabrication and hydrodynamic function. J. Exp. Biol. 217(10), 1656–1666 (2014)

    Article  Google Scholar 

  81. A.G. Domel et al., Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 15(139) (2018)

    Google Scholar 

  82. T. Skylar, C. Kenny, Programmable materials for architectural assembly and automation. Assembly Autom. 32(3), 216–225 (2012)

    Article  Google Scholar 

  83. S. Tibbits, Design to self-assembly. Architectural Des. 82(2), 68–73 (2012)

    Google Scholar 

  84. G.X. Gu et al., Printing nature: unraveling the role of nacre’s mineral bridges. J. Mech. Behav. Biomed. Mater. 76, 135–144 (2017)

    Article  CAS  Google Scholar 

  85. L. Djumas et al., Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Sci. Rep. 6, 26706 (2016)

    Article  CAS  Google Scholar 

  86. G.X. Gu et al., Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mech. Lett. 9, 317–323 (2016)

    Article  Google Scholar 

  87. G.X. Gu, M. Takaffoli, M.J. Buehler, Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29(28), 1700060 (2017)

    Article  CAS  Google Scholar 

  88. Y. Jingjie et al., Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys. Scr. 93(5), 053003 (2018)

    Article  CAS  Google Scholar 

  89. Y. Zheng, Design of hybrid materials using multi-material 3D printer, in Department of Materials Science and Engineering (Monash University, Clayton, Australia, 2015)

    Google Scholar 

  90. M. Kamperman et al., Functional adhesive surfaces with “Gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12(5), 335–348 (2010)

    Article  CAS  Google Scholar 

  91. M. Micciché, E. Arzt, E. Kroner, Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle. ACS Appl. Mater. Interfaces 6(10), 7076–7083 (2014)

    Article  CAS  Google Scholar 

  92. G. Qi et al., Active origami by 4D printing. Smart Mater. Struct. 23(9), 094007 (2014)

    Article  Google Scholar 

  93. Q. Ge, H.J. Qi, M.L. Dunn, Active materials by four-dimension printing. Appl. Phys. Lett. 103(13), 131901 (2013)

    Article  CAS  Google Scholar 

  94. A.T. Gaynor et al., Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136(6), 061015 (2014)

    Article  Google Scholar 

  95. E. Bafekrpour et al., Internally architectured materials with directionally asymmetric friction. Sci. Rep. 5, 10732 (2015)

    Article  CAS  Google Scholar 

  96. E. Bafekrpour et al., Responsive materials: a novel design for enhanced machine-augmented composites. Sci. Rep. 4, 3783 (2014)

    Article  CAS  Google Scholar 

  97. G.F. Hawkins, Augmenting the mechanical properties of materials by embedding simple machines. J. Adv. Mater. 34, 16–20 (2002)

    Google Scholar 

  98. F. Javid et al., Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials. Sci. Rep. 5, 18373 (2015)

    Article  CAS  Google Scholar 

  99. Z. Liu et al., Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017)

    Article  CAS  Google Scholar 

  100. P.-Y. Chen, J. McKittrick, M.A. Meyers, Biological materials: functional adaptations and bioinspired designs. Prog. Mater. Sci. 57(8), 1492–1704 (2012)

    Article  CAS  Google Scholar 

  101. M.A. Meyers et al., Biological materials: a materials science approach. J. Mech. Behav. Biomed. Mater. 4(5), 626–657 (2011)

    Article  Google Scholar 

  102. I.H. Chen et al., Armadillo armor: mechanical testing and micro-structural evaluation. J. Mech. Behav. Biomed. Mater. 4(5), 713–722 (2011)

    Article  Google Scholar 

  103. E.L. Doubrovski et al., Voxel-based fabrication through material property mapping: a design method for bitmap printing. Comput. Aided Des. 60, 3–13 (2015)

    Article  Google Scholar 

  104. M. Osanov, J.K. Guest, Topology optimization for architected materials design, in Annual Review of Materials Research, ed. by D.R. Clarke, vol 46 (Annual Reviews, Palo Alto, 2016), pp. 211–233

    Google Scholar 

  105. P. Zhang et al., Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation. J. Manuf. Sci. Eng. 137(2), 021004 (2015)

    Article  Google Scholar 

  106. G.X. Gu, C.-T. Chen, M.J. Buehler, De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 18, 19–28 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues, collaborators and former students, especially Ehsan Bafekrpour, Lee Djumas, Yunhe Zheng, and Nathan Way who contributed to some of the content shown.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Molotnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molotnikov, A., Simon, G.P., Estrin, Y. (2019). Architectured Polymeric Materials Produced by Additive Manufacturing. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds) Architectured Materials in Nature and Engineering. Springer Series in Materials Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-11942-3_9

Download citation

Publish with us

Policies and ethics