Abstract
Design of architectured materials and structures, whether in nature or in engineering, often relies on forms of optimization. In nature, controlling architecture or spatial heterogeneity is usually adaptive and incremental. Naturally occuring architectured materials exploit heterogeneity with typically graded interfaces, smoothly transitioning across properties and scales in the pursuit of performance and longevity. This chapter explores an engineering tool, topology optimization, that is at the frontier of designing architectured materials and structures. Topology optimization offers a mathematical framework to determine the most efficient material layout for prescribed constraints and loading conditions. In engineering, topology optimization is identifying designs with interfaces, materials, manufacturing methods, and functionalities unavailable to the natural world. The particular focus is on the variety of roles that interfaces may play in advancing architectured materials and structures with topology optimization.
This is a preview of subscription content, access via your institution.
Buying options















Notes
- 1.
Plasma and other states of matter that occur under extreme conditions are not considered.
References
M. Ashby, Designing architectured materials. Scr. Mater. 68(1), 4–7 (2013)
M. Ashby, Y. Brechet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)
S. Torquato, Optimal design of heterogeneous materials. Ann. Rev. Mater. Res. 40, 101–129 (2010)
M. Bendsoe, O. Sigmund, in Topology Optimization: Theory, Methods and Applications (Springer, 2004)
D. Wolf, J. Jaszczak, in Materials Interfaces: Atomic-level Structure and Properties (1992)
G. Allaire, Conception optimale de structures, vol. 58, in Mathématiques & Applications (Springer-Verlag, Berlin, 2007)
P. Christensen, A. Klarbring, in An Introduction to Structural Optimization, vol. 153. (Springer, 2009)
J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multi. Optim. 49(1), 1–38 (2014)
G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)
M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)
L. Gibiansky and A. Cherkaev, Design of composite plates of extremal rigidity, in Topics in the Mathematical Modelling of Composite Materials (Springer, 1997), pp. 95–137
R. Kohn, G. Strang, Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 39(1), 113–137 (1986a)
R. Kohn, G. Strang, Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 39(2), 139–182 (1986b)
R. Kohn, G. Strang, Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 39(3), 353–377 (1986c)
F. Murat, L. Tartar, Calcul des variations et homogénéisation. Les méthodes de lhomogénéisation: théorie et applications en physique 57, 319–369 (1985)
S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
J. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)
G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)
M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)
A. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, J. Bærentzen, Topology optimization using an explicit interface representation, in Structural and Multidisciplinary Optimization (2013), pp. 1–13
L. Blank, M. Farshbaf-Shaker, H. Garcke, C. Rupprecht, V. Styles, Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization (Springer, 2014), pp. 231–246
S. Zhou, M. Wang, Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multi. Optim. 33(2), 89–111 (2007)
O. Querin, G. Steven, Y. Xie, Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng. Comput. 15(8), 1031–1048 (1998)
A. Baumgartner, L. Harzheim, C. Mattheck, Sko (soft kill option): the biological way to find an optimum structure topology. Int. J. Fatigue 14(6), 387–393 (1992)
C. Mattheck, Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990)
O. Sigmund, On the usefulness of non-gradient approaches in topology optimization. Struct. Multi. Optim. 43(5), 589–596 (2011)
J. Guest, Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1), 123–135 (2009)
A. Clausen, N. Aage, O. Sigmund, Topology optimization of coated structures and material interface problems. Comput. Methods Appl. Mech. Eng. 290, 524–541 (2015)
T. Abballe, M. Albertelli, G. Allaire, A. Caron, P. Conraux, L. Dall’Olio, C. Dapogny, C. Dobrzynski, B. Jeannin, F. Jouve, et al., Rodin Project, Topology Optimization 2.0? (2015). HAL preprint: https://hal.archives-ouvertes.fr/hal-01237051
F. Murat, J. Simon, Etude de problèmes d’optimal design. Optim. Tech. Model. Optim. Serv. Man Part 2, 54–62 (1976)
J. Simon, F. Murat, in Sur le contrôle par un domaine géométrique. Publication 76015 du Laboratoire d’Analyse Numérique de l’Université Paris VI, (76015):222 pages (1976)
B. Merriman, J.K. Bence, S.J. Osher, Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)
M. Wang, X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193(6), 469–496 (2004)
G. Allaire, C. Dapogny, G. Delgado, G. Michailidis, Mutli-phase structural optimization via a level-set method. ESAIM Control Optim. Calc. Var. 20(2), 576–611 (2014). https://doi.org/10.1051/cocv/2013076
O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. (Springer-Verlag, New York, 1984)
J. Sokołowski and J.-P. Zolésio. Introduction to Shape Optimization, vol. 16, Springer Series in Computational Mathematics. (Springer-Verlag, Berlin, 1992). Shape sensitivity analysis
S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, in Applied Mathematical Sciences,vol. 153 (Springer-Verlag, New York, 2003)
J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)
G. Allaire, C. Dapogny, P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multi. Optim. 48(4), 711–715 (2013)
Q. Xia, T. Shi, S. Liu, M. Wang, A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 9091, 55–64 (2012)
L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial. Differ. Equ. 1(1), 55–69 (1993)
C. Dapogny, Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2013. Available at http://tel.archives-ouvertes.fr/tel-00916224
G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53(6), 1349–1382 (2016)
F. Feppon, Design and Optimization for Wear of Bi-material Composite Surfaces. Master’s thesis, Ecole Polytechnique, Promotion X2012, 2015
F. Feppon, G. Michailidis, M. Sidebottom, G. Allaire, B. Krick, N. Vermaak, Introducing a level-set based shape and topology optimization method for the wear of composite materials with geometric constraints. Struct. Multi. Optim. 55(2), 547–568 (2017). https://doi.org/10.1007/s00158-016-1512-4
N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Bréchet, Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Multi. Optim. 50(4), 623–644 (2014)
O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20(4), 351–368 (1995)
A. Faure, G. Michailidis, G. Parry, N. Vermaak, R. Estevez, Design of thermoelastic multi-material structures with graded interfaces using topology optimization. Struct. Multi. Optim. 56(4), 823–837 (2017). https://doi.org/10.1007/s00158-017-1688-2
A. Clausen, N. Aage, O. Sigmund, Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2(2), 250–257 (2016)
P. Zhang, J. Liu, A. To, Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scripta Mater. 135, 148–152 (2016)
Acknowledgements
This material is, in part, based upon work supported by the National Science Foundation under Grant No. 1538125.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Vermaak, N. et al. (2019). Topological Optimization with Interfaces. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds) Architectured Materials in Nature and Engineering. Springer Series in Materials Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-11942-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-11942-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11941-6
Online ISBN: 978-3-030-11942-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)