Skip to main content

Topological Optimization with Interfaces

  • Chapter
  • First Online:
Architectured Materials in Nature and Engineering

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 282))

Abstract

Design of architectured materials and structures, whether in nature or in engineering, often relies on forms of optimization. In nature, controlling architecture or spatial heterogeneity is usually adaptive and incremental. Naturally occuring architectured materials exploit heterogeneity with typically graded interfaces, smoothly transitioning across properties and scales in the pursuit of performance and longevity. This chapter explores an engineering tool, topology optimization, that is at the frontier of designing architectured materials and structures. Topology optimization offers a mathematical framework to determine the most efficient material layout for prescribed constraints and loading conditions. In engineering, topology optimization is identifying designs with interfaces, materials, manufacturing methods, and functionalities unavailable to the natural world. The particular focus is on the variety of roles that interfaces may play in advancing architectured materials and structures with topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Plasma and other states of matter that occur under extreme conditions are not considered.

References

  1. M. Ashby, Designing architectured materials. Scr. Mater. 68(1), 4–7 (2013)

    Article  CAS  Google Scholar 

  2. M. Ashby, Y. Brechet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)

    Article  CAS  Google Scholar 

  3. S. Torquato, Optimal design of heterogeneous materials. Ann. Rev. Mater. Res. 40, 101–129 (2010)

    Article  CAS  Google Scholar 

  4. M. Bendsoe, O. Sigmund, in Topology Optimization: Theory, Methods and Applications (Springer, 2004)

    Google Scholar 

  5. D. Wolf, J. Jaszczak, in Materials Interfaces: Atomic-level Structure and Properties (1992)

    Google Scholar 

  6. G. Allaire, Conception optimale de structures, vol. 58, in Mathématiques & Applications (Springer-Verlag, Berlin, 2007)

    Google Scholar 

  7. P. Christensen, A. Klarbring, in An Introduction to Structural Optimization, vol. 153. (Springer, 2009)

    Google Scholar 

  8. J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multi. Optim. 49(1), 1–38 (2014)

    Article  Google Scholar 

  9. G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)

    Article  Google Scholar 

  10. M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  Google Scholar 

  11. L. Gibiansky and A. Cherkaev, Design of composite plates of extremal rigidity, in Topics in the Mathematical Modelling of Composite Materials (Springer, 1997), pp. 95–137

    Google Scholar 

  12. R. Kohn, G. Strang, Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 39(1), 113–137 (1986a)

    Article  Google Scholar 

  13. R. Kohn, G. Strang, Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 39(2), 139–182 (1986b)

    Article  Google Scholar 

  14. R. Kohn, G. Strang, Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 39(3), 353–377 (1986c)

    Article  Google Scholar 

  15. F. Murat, L. Tartar, Calcul des variations et homogénéisation. Les méthodes de lhomogénéisation: théorie et applications en physique 57, 319–369 (1985)

    Google Scholar 

  16. S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  Google Scholar 

  17. J. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)

    Article  Google Scholar 

  18. G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  Google Scholar 

  19. M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)

    Article  Google Scholar 

  20. A. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, J. Bærentzen, Topology optimization using an explicit interface representation, in Structural and Multidisciplinary Optimization (2013), pp. 1–13

    Google Scholar 

  21. L. Blank, M. Farshbaf-Shaker, H. Garcke, C. Rupprecht, V. Styles, Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization (Springer, 2014), pp. 231–246

    Google Scholar 

  22. S. Zhou, M. Wang, Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multi. Optim. 33(2), 89–111 (2007)

    Article  Google Scholar 

  23. O. Querin, G. Steven, Y. Xie, Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng. Comput. 15(8), 1031–1048 (1998)

    Article  Google Scholar 

  24. A. Baumgartner, L. Harzheim, C. Mattheck, Sko (soft kill option): the biological way to find an optimum structure topology. Int. J. Fatigue 14(6), 387–393 (1992)

    Article  Google Scholar 

  25. C. Mattheck, Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990)

    Article  Google Scholar 

  26. O. Sigmund, On the usefulness of non-gradient approaches in topology optimization. Struct. Multi. Optim. 43(5), 589–596 (2011)

    Article  Google Scholar 

  27. J. Guest, Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1), 123–135 (2009)

    Article  Google Scholar 

  28. A. Clausen, N. Aage, O. Sigmund, Topology optimization of coated structures and material interface problems. Comput. Methods Appl. Mech. Eng. 290, 524–541 (2015)

    Article  Google Scholar 

  29. T. Abballe, M. Albertelli, G. Allaire, A. Caron, P. Conraux, L. Dall’Olio, C. Dapogny, C. Dobrzynski, B. Jeannin, F. Jouve, et al., Rodin Project, Topology Optimization 2.0? (2015). HAL preprint: https://hal.archives-ouvertes.fr/hal-01237051

  30. F. Murat, J. Simon, Etude de problèmes d’optimal design. Optim. Tech. Model. Optim. Serv. Man Part 2, 54–62 (1976)

    Article  Google Scholar 

  31. J. Simon, F. Murat, in Sur le contrôle par un domaine géométrique. Publication 76015 du Laboratoire d’Analyse Numérique de l’Université Paris VI, (76015):222 pages (1976)

    Google Scholar 

  32. B. Merriman, J.K. Bence, S.J. Osher, Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  Google Scholar 

  33. M. Wang, X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193(6), 469–496 (2004)

    Article  Google Scholar 

  34. G. Allaire, C. Dapogny, G. Delgado, G. Michailidis, Mutli-phase structural optimization via a level-set method. ESAIM Control Optim. Calc. Var. 20(2), 576–611 (2014). https://doi.org/10.1051/cocv/2013076

    Article  Google Scholar 

  35. O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. (Springer-Verlag, New York, 1984)

    Google Scholar 

  36. J. Sokołowski and J.-P. Zolésio. Introduction to Shape Optimization, vol. 16, Springer Series in Computational Mathematics. (Springer-Verlag, Berlin, 1992). Shape sensitivity analysis

    Google Scholar 

  37. S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, in Applied Mathematical Sciences,vol. 153 (Springer-Verlag, New York, 2003)

    Google Scholar 

  38. J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  39. G. Allaire, C. Dapogny, P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multi. Optim. 48(4), 711–715 (2013)

    Article  Google Scholar 

  40. Q. Xia, T. Shi, S. Liu, M. Wang, A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 9091, 55–64 (2012)

    Article  Google Scholar 

  41. L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial. Differ. Equ. 1(1), 55–69 (1993)

    Article  Google Scholar 

  42. C. Dapogny, Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2013. Available at http://tel.archives-ouvertes.fr/tel-00916224

  43. G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53(6), 1349–1382 (2016)

    Article  Google Scholar 

  44. F. Feppon, Design and Optimization for Wear of Bi-material Composite Surfaces. Master’s thesis, Ecole Polytechnique, Promotion X2012, 2015

    Google Scholar 

  45. F. Feppon, G. Michailidis, M. Sidebottom, G. Allaire, B. Krick, N. Vermaak, Introducing a level-set based shape and topology optimization method for the wear of composite materials with geometric constraints. Struct. Multi. Optim. 55(2), 547–568 (2017). https://doi.org/10.1007/s00158-016-1512-4

    Article  Google Scholar 

  46. N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Bréchet, Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Multi. Optim. 50(4), 623–644 (2014)

    Article  Google Scholar 

  47. O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20(4), 351–368 (1995)

    Article  Google Scholar 

  48. A. Faure, G. Michailidis, G. Parry, N. Vermaak, R. Estevez, Design of thermoelastic multi-material structures with graded interfaces using topology optimization. Struct. Multi. Optim. 56(4), 823–837 (2017). https://doi.org/10.1007/s00158-017-1688-2

  49. A. Clausen, N. Aage, O. Sigmund, Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2(2), 250–257 (2016)

    Article  Google Scholar 

  50. P. Zhang, J. Liu, A. To, Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scripta Mater. 135, 148–152 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This material is, in part, based upon work supported by the National Science Foundation under Grant No. 1538125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vermaak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vermaak, N. et al. (2019). Topological Optimization with Interfaces. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds) Architectured Materials in Nature and Engineering. Springer Series in Materials Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-11942-3_6

Download citation

Publish with us

Policies and ethics