An Overview of Big Data and Machine Learning Paradigms

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 915)


Big Data is one of the most famous concepts in the world of new technology and decision making nowadays. It refers to a huge mass of varied and complex data that is gathered from different sources and exceeds the storage and processing capacity of traditional applications and whose analysis and exploitation must increasingly be done in real time. The value of information in Big Data is very important because it offers many benefits in forecasting accuracy, assisting in the design of new strategies and decision making. Thus, one of the major challenges is data analysis which requires new techniques and algorithms to search for hidden information, correlations and relationships in large amount of data. In this context, Machine Learning allows the use of Big Data full potential. In the first part of this paper, we will present an overview of Big Data, its characteristics and sources as well as its application areas. Then, we will discuss some of problems and challenges related to this concept. Examples of Big Data technologies and platforms will also be presented. In the second part, we will highlight some of the most promising Big Data Analytics methods, mainly Machine Learning. We conclude by proposing a taxonomy of Machine Learning techniques and algorithms in the context of Big Data.


Big data IoT Data analytics Machine learning Hadoop MapReduce 


  1. 1.
    Gantz, J., Reinsel, D.: The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView IDC Anal. Future 2007, 1–16 (2012)Google Scholar
  2. 2.
    Buyya, R., Calheiros, R.N., Dastjerdi, A.V. (ed.): Big data: Principles and Paradigms. Morgan Kaufmann (2016)Google Scholar
  3. 3.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI magazine 17(3), 37 (1996)Google Scholar
  4. 4.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)Google Scholar
  5. 5.
    Suthaharan, S.: Machine Learning Models and Algorithms for Big Data Classification. Springer, Boston (2016)zbMATHGoogle Scholar
  6. 6.
    Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)MathSciNetGoogle Scholar
  7. 7.
    Mitchell, T.M., et al.: Machine learning, vol. 45, pp. 870–877. Burr Ridge, IL: McGraw Hill (1997)Google Scholar
  8. 8.
    Gantz, J., Reinsel, D.: Extracting value from chaos. IDC iview 1142(2011), 1–12 (2011)Google Scholar
  9. 9.
    Sicular, S.: Gartner’s big data definition consists of three parts, not to be confused with three “v” s. Gartner, Inc 27 (2013)Google Scholar
  10. 10.
    Erl, T., Khattak, W., Buhler, P.: Big Data Fundamentals: Concepts, Drivers & Techniques. Prentice Hall, Upper Saddle River, NJ, USA (2016)Google Scholar
  11. 11.
    Russom, P.: Big Data Analytics. TDWI Best Practices Report, Fourth Quarter, 19(4), pp. 1–34 (2011)Google Scholar
  12. 12.
    Mahalakshmi, S., Saiashwini, C., Meghana, S.: Research study of big data clustering techniques. Int. J. Innov. Res. Sci. Eng. 80–84 (2001)Google Scholar
  13. 13.
    Yang, C., Huang, Q., Li, Z., Liu, K.: Big Data and cloud computing: innovation opportunities and challenges. Int. J. Digit. Earth 10(1), 13–53 (2017)Google Scholar
  14. 14.
    Ericsson, L.: More than 50 billion connected devices. White Paper 14, 124 (2011)Google Scholar
  15. 15.
    Kudyba, S.: Big Data, Mining, and Analytics: Components of Strategic Decision Making. CRC Press (2014)Google Scholar
  16. 16.
    Demchenko, Y., De Laat, C., Membrey, P.: Defining architecture components of the Big Data Ecosystem. In: International Conference on Collaboration Technologies and Systems, pp. 104–112. (CTS), IEEE (2014)Google Scholar
  17. 17.
    Hashem, I.A.T., Chang, V., Anuar, N.B., Adewole, K., Yaqoob, I., Gani, A., et al.: The role of big data in smart city. Int. J. Inf. Manage. 36(5), 748–758 (2016)Google Scholar
  18. 18.
    Chen, H., Chiang, R.H.L., Storey, V.C.: Business Intelligence and Analytics: From Big Data to Big Impact, pp. 1165–1188. MIS quarterly, (2012)Google Scholar
  19. 19.
    Herland, M., Khoshgoftaar, T.M., Wald, R.: A review of data mining using big data in health informatics. J. Big Data 1(1), 2 (2014)Google Scholar
  20. 20.
    Chen, M., Mao, S., Zhang, Y., Leung, V.C., et al.: Big Data: Related Technologies, Challenges and Future Prospects. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Eadline, D.: Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem. Addison-Wesley Professional (2015)Google Scholar
  22. 22.
    Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ.Comput. Inf. Sci. (2017)Google Scholar
  23. 23.
    Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. J. Big Data 2(1), 8 (2015)Google Scholar
  24. 24.
    Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2(1), 24 (2015)Google Scholar
  25. 25.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)Google Scholar
  26. 26.
    Pokorny, J.: NoSQL databases: a step to database scalability in web environment. Int. J. Web Inf. Syst. 9(1), 69–82 (2013)Google Scholar
  27. 27.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: IEEE 26th symposium on Mass storage systems and technologies (MSST), 2010, pp. 1–10. IEEE (2010)Google Scholar
  28. 28.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10(10–10), 95 (2010)Google Scholar
  29. 29.
    Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R. et al.: Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud Computing, pp. 5. ACM (2013)Google Scholar
  30. 30.
    Gates, A., Dai, D.: Programming Pig: Dataflow Scripting with Hadoop. O’Reilly Media, Inc. (2016)Google Scholar
  31. 31.
    Shaw, S., Vermeulen, A., Gupta, A., Kjerrumgaard, D.: Hive architecture. In: Practical Hive, pp. 37–48. Apress, Berkeley, CA (2016)Google Scholar
  32. 32.
    George, L.: HBase: The Definitive Guide: Random Access to your Planet-size Data. O’Reilly Media, Inc. (2011)Google Scholar
  33. 33.
    Carpenter, J. Eben, H.: Cassandra: The Definitive Guide: Distributed Data at Web Scale. O’Reilly Media, Inc (2016)Google Scholar
  34. 34.
    Vohra, D.: Using apache sqoop. In: Pro Docker, pp. 151–183. Apress, Berkeley, CA (2016)Google Scholar
  35. 35.
    Junqueira, F., Reed, B.: ZooKeeper: distributed process coordination. O’Reilly Media, Inc. (2013)Google Scholar
  36. 36.
    Wadkar, S., Siddalingaiah, M.: Apache ambari. In Pro Apache Hadoop, pp. 399–401. Apress, Berkeley, CA. (2014)Google Scholar
  37. 37.
    Tsai, C.W., Lai, C.F., Chao, H.C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data 2(1), 21 (2015)Google Scholar
  38. 38.
    Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A.Y., et al.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Topics Comput. 2(3), 267–279 (2014)Google Scholar
  39. 39.
    L’heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.: Machine learning with big data: challenges and approaches. IEEE Access, 5(5), 777–797 (2017)Google Scholar
  40. 40.
    Bolón-Canedo, V., Remeseiro, B., Sechidis, K., Martinez-Rego, D., Alonso-Betanzos, A.: Algorithmic challenges in Big Data analytics. In: ESANN 2017 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 519–528 (2017)Google Scholar
  41. 41.
    García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing: methods and prospects. Big Data Anal. 1(1), 9 (2016)Google Scholar
  42. 42.
    Chu, W.W.: Data mining and knowledge discovery for Big Data. Stud. Big Data, 1 (2014)Google Scholar
  43. 43.
    Che, D., Safran, M. Peng, Z.: From big data to big data mining: challenges, issues, and opportunities. In: International Conference on Database Systems for Advanced Applications, pp. 1–15. Springer, Berlin, Heidelberg (2013)Google Scholar
  44. 44.
    Alpaydin, E.: Introduction to Machine Learning. MIT press (2014)Google Scholar
  45. 45.
    Liu, T. Y., Chen, W., Wang, T.: Distributed machine learning: Foundations, trends, and practices. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 913–915. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  46. 46.
    Dean, J.: Big data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners. Wiley (2014)Google Scholar
  47. 47.
    Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng, S.: A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016(1), 67 (2016)Google Scholar
  48. 48.
    Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)Google Scholar
  49. 49.
    Kotu, V., Deshpande, B.: Predictive analytics and data mining: concepts and practice with rapidminer. Morgan Kaufmann (2014)Google Scholar
  50. 50.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)Google Scholar
  51. 51.
    Kelleher, J. D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press (2015)Google Scholar
  52. 52.
    Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning (Vol. 1, No. 10). New York, NY, USA: Springer series in statistics (2001)Google Scholar
  53. 53.
    Zhu, X.: Semi-supervised learning literature survey. Comput. Sci. Univ. Wisconsin-Madison 2(3), 4 (2006)Google Scholar
  54. 54.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge (1998)Google Scholar
  55. 55.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Patt. Recogn. Lett. 31(8), 651–666 (2010)Google Scholar
  56. 56.
    Sajana, T., Rani, C.S., Narayana, K.V.: A survey on clustering techniques for big data mining. Indian J. Sci. Technol. 9(3) (2016)Google Scholar
  57. 57.
    Aggarwal, C.C., Reddy, C.K. (ed.).: Data Clustering: Algorithms and Applications. CRC press (2013)Google Scholar
  58. 58.
    Ghodsi, A.: Dimensionality reduction a short tutorial. Department of Statistics and Actuarial Science, Univ. of Waterloo, Ontario, Canada, 37, pp. 38 (2006)Google Scholar
  59. 59.
    Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 60, p. 78. Springer, New York (2006)Google Scholar
  60. 60.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)Google Scholar
  61. 61.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  62. 62.
    Neal, R.M.: Bayesian Methods for Machine Learning. NIPS tutorial, 13 (2004)Google Scholar
  63. 63.
    Murphy, K. P.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)Google Scholar
  64. 64.
    Schalkoff, R. J.: Artificial Neural Networks, vol. 1. New York: McGraw-Hill (1997)Google Scholar
  65. 65.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature, 521(7553), 436 (2015)Google Scholar
  66. 66.
    Goodfellow, I., Bengio, Y., Courville, A. et al.: Deep Learning, vol. 1, Cambridge: MIT press (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Informatique de Mohammedia (LIM), FSTMHassan II University of CasablancaCasablancaMorocco

Personalised recommendations