Datamining for Fraud Detecting, State of the Art

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 915)


Fraud detection is a rapidly developing field; several technologies have been used to prevent fraud such as data mining (DM). The use of data mining applications have shown their utility in different fields and have attracted increasing attention and popularity in the financial world. Data mining plays an important role in the field of fraud because it is often applied to extract and discover the truths hidden behind very large amounts of data. For this purpose, our contribution explores the applications of data mining techniques to fraud detection, and groups the various researches carried out in this field from 1966 to 2017. The result of this study will support and guide future research in this field.


Datamining Fraud detection Intelligent system 


  1. 1.
    Bolton, R. J., Hand, D.J. Statistical fraud detection: a review. Stat. Sci. 17(3), 35–255 (2002)Google Scholar
  2. 2.
    Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. Artif. Intell. Rev. 2005, 1–14 (2005)Google Scholar
  3. 3.
    Yue, X., Wu, Y., Wang, Y. L., Chu, C.: A review of data mining-based financial fraud detection research. In: International Conference on Wireless Communications, Networking and Mobile Computing, pp. 5519–5522 (2007)Google Scholar
  4. 4.
    Fawcett, T., Provost, F.: Adaptive fraud detection. Data Min. Knowl. Disc. 1(3), 91–316 (1997)Google Scholar
  5. 5.
    Zhang, D., Zhou, L.: Discovering golden nuggets: data mining in financial application. IEEE Trans. Syst. Man Cybern. 34(4) (Nov 2004)Google Scholar
  6. 6.
    Ngai, E., Hu, Y., Wong, Y., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis. Support Syst. 50(3), 559–569 (2011)Google Scholar
  7. 7.
    Spathis, C.T., Doumpos, M., Zopounidis, C.: Detecting falsified financial statements: a comparative study using multicriteria analysis and multivariate statistical techniques. Eur. Account. Rev. 11(3), 509–535 (2002)Google Scholar
  8. 8.
    Ravisankar, P., Ravi, V., Raghava Rao, G., Bose, I.: Detection of financial statement fraud and feature selection using data mining techniques (2011)Google Scholar
  9. 9.
    Oxford Concise English Dictionary, 10th edn. Publisher (1999)Google Scholar
  10. 10.
    Kirkos, E., Spathis, C., Manolopoulos, Y.: Data mining techniques for the detection of fraudulent financial statements. Expert Syst. Appl. 32(4), 995–1003 (2007)Google Scholar
  11. 11.
    Bashir, A., Khan, L., Awad, M.: Bayesian networks. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining: I-Z, pp. 89–92. Idea Group Inc., Hershey, PA (2006)Google Scholar
  12. 12.
    Lin, C.C., Huang, S.Y., Chiu, A.A.: Fraud detection using fraud triangle risk factors with analytic hierarchy process. In: 2012 Annual Meeting of the American Accounting Association (2012)Google Scholar
  13. 13.
    Goode, S., Lacey, D.: Detecting complex account fraud in the enterprise: the role of technical and non-technical controls. Decis. Support Syst. 50(4), 702–714 (2011)Google Scholar
  14. 14.
    Viaene, S., Dedene, G., Derrig, R.A.: Auto claim fraud detection using bayesian learning neural networks. Expert Syst. Appl. 29(3) [41], 653–666 (2005)Google Scholar
  15. 15.
    Fanning, K.M., Cogger, K.O.: Neural network detection of management fraud using published financial data. Int. J. Intell. Syst. Account. Financ. Manag. 7(1), 21–41 (1998)Google Scholar
  16. 16.
    Cerullo, M.J., Cerullo, V.: Using neural networks to predict financial reporting fraud. Comput. Fraud Secur., 14–17 (May/June 1999)Google Scholar
  17. 17.
    Green, P., Choi, J.H.: Assessing the risk of management fraud through neural network technology. Auditing: J. Pract. Theor. 16(1), 14–28 (1997)Google Scholar
  18. 18.
    Yuan, J., Yuan, C., Deng, X., Yuan, C.: The effects of manager compensation and market competition on financial fraud in public companies: an empirical study in China. Int. J. Manag. 25(2), 322–335 (2008)Google Scholar
  19. 19.
    Bell, T.B., Carcello, J.V.: A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing: J. Pract. Theor. 19(1), 169–174 (2000)Google Scholar
  20. 20.
    Bermúdez, L., Pérez, J.M., Ayuso, M., Gómez, E., Vázquez, F.J.: A Bayesian dichotomous, model with asymmetric link for fraud in insurance. Insur.: Math. Econ. 42(2), 779–786 (2008)Google Scholar
  21. 21.
    Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35(4) (2008)Google Scholar
  22. 22.
    Kotsiantis, S., Koumanakos, E., Tzelepis, D., Tampakas, V.: Forecasting fraudulent financial statements using data mining. Int. J. Comput. Intell. 3(2), 104–110 (2006)Google Scholar
  23. 23.
    Caudill, S.B., Ayuso, M., Guillén, M.: Fraud detection using a multinominal logit model with missing information. J. Risk Insur. 72(4), 539–550 (2005)Google Scholar
  24. 24.
    Yeh, I.C., Lien, C.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst. Appl. 36(2), 2473–2480 (2008)Google Scholar
  25. 25.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, CA, USA (2001)zbMATHGoogle Scholar
  26. 26.
    Huang, M.J., Chen, M.Y., Lee, S.C.: Integrating data mining with casebased reasoning for chronic diseases prognosis and diagnosis. Expert Syst. Appl. 32(3), 856–867 (2007)Google Scholar
  27. 27.
    Ameur, F., Tkiouat, M.: Taxpayers Fraudulent behavior modeling the use of datamining in fiscal fraud detecting Moroccan case. Appl. Math. 3(10), 1207–1213 (2012). Scholar
  28. 28.
    Gray, G.L., Debreceny, R.S. (2014)Google Scholar
  29. 29.
    Siciliano, R., Conversano, C.: Decision tree induction. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining: I-Z, pp. 353–358. Idea Group Inc., Hershey, PA (2006)Google Scholar
  30. 30.
    Yang, W., Hwang, S.: A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst. Appl. 31(1), 56–68 (2006)MathSciNetGoogle Scholar
  31. 31.
    Lee, T.S., Chiu, C.C., Chou, Y.C., Lu, C.J.: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 50(4), 1113–1130 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Smith, K.A.: Neural networks for prediction and classification. In: Wang J. (ed.) Encyclopedia of Data Warehousing and Mining: I–Z. Idea Group Inc., Hershey, PA, pp. 865–869 (2006)Google Scholar
  33. 33.
    Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. 30(4), 451–462 (2000)Google Scholar
  34. 34.
    Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science, New York, NY (2008)zbMATHGoogle Scholar
  35. 35.
    Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  36. 36.
    Chen, W.-S., Du, Y.-K.: Using neural networks and data mining techniques for the financial distress prediction model (2009)Google Scholar
  37. 37.
    Koh, H.C., Low, C.K.: Going concern prediction using data mining techniques. Manag. Auditing J. 19(3), 462–476 (2004)Google Scholar
  38. 38.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  39. 39.
    Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data: Recent Advances in Clustering, pp. 25–71. Springer, Heidelberg (2006)Google Scholar
  40. 40.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  41. 41.
    Frawley, W.J., Paitetsjy-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: an overview. AI Mag. 13, 57–70 (1992)Google Scholar
  42. 42.
    Lu, C.L., Chen, T.C.: A study of applying data mining approach to the information disclosure for Taiwan’s stock market investors. Expert Syst. Appl. 36(2), 3536–3542 (2009)Google Scholar
  43. 43.
    Yue, D., Wu, X., Wang, Y., Li, Y., Chu, C.H.: A Review of Data Mining-Based Financial Fraud Detection Research, International Conference on Wireless Communications, Networking and Mobile Computing, pp. 5519–5522 (2007)Google Scholar
  44. 44.
    Chun, S.H., Park, Y.J.: A new hybrid data mining technique using a regression case based reasoning: application to financial forecasting. Expert Syst. Appl. 31(2), 329–336 (2006)Google Scholar
  45. 45.
    Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms’. Wiley, IEEE Press (2002)Google Scholar
  46. 46.
    Zhou, W., Kapoor, G.: Detecting Evolutionary Financial Statement Fraud (2011)Google Scholar
  47. 47.
    Breiman, L., Friedman, J., Olshen, R., Stone, S.: Classification and Regression Trees. Chapman and Hall/CRC Press, Boca Raton, FL (1984)zbMATHGoogle Scholar
  48. 48.
    Lin, C.-C., Chiu, A.-A., Huang, S.Y., Yen, D.C.: Detecting the financial statement fraud: the analysis of the differences between data mining techniques and experts’ judgments (2015)Google Scholar
  49. 49.
    Carneiroa, N., Figueiraa, G., Costac, M.: A data mining based system for credit-card fraud detection in e-tail (2017)Google Scholar
  50. 50.
    Whitrow, C., Hand, D.J., Juszczak, P., Weston, D., Adams, N.M.: Transaction aggregation as a strategy for credit card fraud detection. Data Min. Knowl. Disc. 18(1) 30–55 (2009).,
  51. 51.
    Lee, T.S., Yeh, Y.H.: Corporate governance and financial distress: evidence from Taiwan. Corp. Gov. Int. Rev. 12(3), 378–388 (2004)Google Scholar
  52. 52.
    Meyer, P.A., Pifer, H.: Prediction of bank failures. J. Financ. 25, 853–868 (1970)Google Scholar
  53. 53.
    Spathis, C.T.: Detecting false financial statements using published data: some evidence from Greece. Manag. Auditing J. 17(4), 179–191 (2002)Google Scholar
  54. 54.
    Dimitras, A.I., Zanakis, S.H., Zopounidis, C.: A survey of business failure with an emphasis on prediction methods and industrial applications. Eur. J. Oper. Res. 90(3), 487–513 (1996)zbMATHGoogle Scholar
  55. 55.
    Altman, E.L., Edward, I., Haldeman, R., Narayanan, P.: A new model to identify bankruptcy risk of corporations. J. Banking Financ. 1, 29–54 (1977)Google Scholar
  56. 56.
    Blum, M.: Failing company discriminant analysis. J. Account. Res., 1–25 (1974)Google Scholar
  57. 57.
    Laitinen, E.K., Laitinen, T.: Bankruptcy prediction application of the Taylor’s expansion in logistic regression. Int. Rev. Financ. Anal. 9, 327–349 (2000)Google Scholar
  58. 58.
    Shin, K.S., Lee, Y.J.: A genetic algorithm application in bankruptcy prediction modeling. Expert Syst. Appl. 23(3), 321–328 (2002)Google Scholar
  59. 59.
    Tsai, C.F.: Feature selection in bankruptcy prediction. Knowl.-Based Syst. 22(2), 120–127 (2009)Google Scholar
  60. 60.
    Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. Decis. Support Syst. 50(3), 602–613 (2011)Google Scholar
  61. 61.
    Feroz, E.H., Kwon, T.M., Pastena, V., Park, K.J.: The efficacy of red flags in predicting the SEC’s targets: an artificial neural networks approach. Int. J. Intell. Syst. Account. Financ. Manag. 9(3), 145–157 (2000)Google Scholar
  62. 62.
    Pacheco, R., Martins, A., Barcia, R.M., Khator, S.: A hybrid intelligent system applied to financial statement analysis. In: Proceedings of the 5th IEEE Conference on Fuzzy Systems, vol. 2, pp. 1007–10128, New Orleans, LA, USA (1996)Google Scholar
  63. 63.
    Koskivaara, E.: Different pre-processing models for financial accounts when using neural networks for auditing. In: Proceedings of the 8th European Conference on Information Systems, vol. 1, pp. 326–3328, Vienna, Austria (2000)Google Scholar
  64. 64.
    Busta, B., Weinberg, R.: Using Benford’s law and neural networks as a review procedure. Manag. Auditing J. 13(6), 356–366 (1998)Google Scholar
  65. 65.
    Sohl, J.E., Venkatachalam, A.R.: A neural network approach to forecasting model selection. Inf. Manag. 29(6), 297–303 (1995)Google Scholar
  66. 66.
    Calderon, T.G., Cheh, J.J.: A roadmap for future neural networks research in auditing and risk assessment. Int. J. Account. Inf. Syst. 3(4), 203–236 (2002)Google Scholar
  67. 67.
    Sugumaran, V., Muralidharan, V., Ramachandran, K.I.: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 21(2), 930–942 (2007)Google Scholar
  68. 68.
    Olszewski, D.: Fraud detection using self-organizing map visualizing the user profiles. Knowl.-Based Syst. 70, 324–334 (2014)Google Scholar
  69. 69.
    Chen, A.P., Chen, C.C.: A new efficient approach for data clustering in electronic library using ant colony clustering algorithm. Electron. Libr. 24(4), 548–559 (2006)Google Scholar
  70. 70.
    Srivastava, A., Kundu, A., Sural, S., Majumdar, A.: Credit card fraud detection using hidden Markov model. IEEE Trans. Dependable Secur. Comput. 5(1), 37–48 (2008)Google Scholar
  71. 71.
    Dorronsoro, J.R., Ginel, F., Sánchez, C., Cruz, C.S.: Neural fraud detection in credit card operations. IEEE Trans. Neural Netw. 8(4), 827–834 (1997)Google Scholar
  72. 72.
    Chen, R., Chen, T., Lin, C.: A new binary support vector system for increasing detection rate of credit card fraud. Int. J. Pattern Recogn. Artif. Intell. 20(2), 227–239 (2006)Google Scholar
  73. 73.
    Zaslavsky, V., Strizhak, A.: Credit card fraud detection using self-organizing maps. Inf. Secur. 18, 48–63 (2006)Google Scholar
  74. 74.
    Gao, Z., Ye, M.: A framework for data mining-based anti-money laundering research. J. Money Laundering Control 10(2), 170–179 (2007)Google Scholar
  75. 75.
    Atwood, J.A., Robinson-Cox, J.F., Shaik, S.: Estimating the prevalence and cost of yield-switching fraud in the federal crop insurance program. Am. J. Agric. Econ. 88(2), 365–381 (2006)Google Scholar
  76. 76.
    Jin, Y., Rejesus, R.M., Little, B.B.: Binary choice models for rare events data: a crop insurance fraud application. Appl. Econ. 37(7), 841–848 (2005)Google Scholar
  77. 77.
    Major, J.A., Riedinger, D.R.: EFD: a hybrid knowledge/statistical-based system for the detection of fraud. J. Risk Insur. 69(3), 309–324 (2002)Google Scholar
  78. 78.
    He, H., Wang, J., Graco, W., Hawkins, S.: Application of neural networks to detection of medical fraud. Expert Syst. Appl. 13(4), 329–336 (1997)Google Scholar
  79. 79.
    Sokol, L., Garcia, B., Rodriguez, J., West, M., Johnson, K.: Using data mining to find fraud in HCFA health care claims. Top. Health Inf. Manag. 22(1), 1–13 (2001)Google Scholar
  80. 80.
    Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min. Knowl. Discov. 8(3), 275–300 (2004).[47]Google Scholar
  81. 81.
    Brockett, P.L., Derrig, R.A., Golden, L.L.: Fraud classification using principal component analysis of RIDITS. J. Risk Insur. 69(3), 341–371 (2002)Google Scholar
  82. 82.
    Viaene, S., Derrig, R.A., Baesens, B., Dedene, G.: A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. J. Risk Insur. 69(3), 373–421 (2002) [50]Google Scholar
  83. 83.
    Pathak, J., Vidyarthi, N., Summers, S.L.: A fuzzy-based algorithm for auditors to detect elements of fraud in settled insurance claims. Manag. Auditing J. 20(6), 632–644 (2005)Google Scholar
  84. 84.
    Tennyson, S., Salsas-Forn, P.: Claims auditing in automobile insurance: fraud detection and deterrence objectives. J. Risk Insur. 69(3), 289–308 (2002)Google Scholar
  85. 85.
    Artı́s, M., Ayuso, M., Guillén, M.: Modelling different types of automobile insurance fraud behaviour in the Spanish market. Insur. Math. Econ. 24(1), 67–81 (1999)Google Scholar
  86. 86.
    Artı́s, M., Ayuso, M., Guillén, M.: Detection of automobile insurance fraud with discrete choice models and misclassified claims. J. Risk Insur. 69(3), 325–340 (2002)Google Scholar
  87. 87.
    Viaene, S., Ayuso, M., Guillén, M., Van Gheel, D., Dedene, G.: Strategies for detecting fraudulent claims in the automobile insurance industry. Eur. J. Oper. Res. 176(1), 565–583 (2007)zbMATHGoogle Scholar
  88. 88.
    Deshmukh, A., Romine, J., Siegel, P.H.: Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach. Manag. Financ. 23(6), 35–48 (1997)Google Scholar
  89. 89.
    Weisberg, H.I., Derrig, R.A.: Quantitative methods for detecting fraudulent automobile bodily injury claims. Risques 35, 75–101 (1998)Google Scholar
  90. 90.
    Brockett, P.L., Xia, X., Derrig, R.A.: Using Kononen’s self-organizing feature map to uncover automobile bodily injury claims fraud. J. Risk Insur. 65(2), 245–274 (1998)Google Scholar
  91. 91.
    Viaene, S., Derrig, R.A., Dedene, G.: A case study of applying boosting naive Bayes to claim fraud diagnosis. IEEE Trans. Knowl. Data Eng. 16(5), 612–620 (2004)zbMATHGoogle Scholar
  92. 92.
    Sternberg, M., Reynolds, R.G.: Using cultural algorithms to support re-engineering of rule-based expert systems, in dynamic performance environments: a case study in fraud detection. IEEE Trans. Evol. Comput. 1(4), 225–243 (1997)Google Scholar
  93. 93.
    Crocker, K.J., Tennyson, S.: Insurance fraud and optimal claims settlement strategies. J. Law Econ. 45, 469–507 (2002)Google Scholar
  94. 94.
    Belhadji, E.B., Dionne, G., Tarkhani, F.: A model for the detection of insurance fraud. Geneva Papers Risk Insur. 25(4), 517–538 (2000)Google Scholar
  95. 95.
    Welch, J., Reeves, T.E., Welch, S.T.: Using a genetic algorithm-based classifier system for modeling auditor decision behavior in a fraud setting. Int. J. Intell. Syst. Account. Financ. Manag. 7(3), 173–186 (1998)Google Scholar
  96. 96.
    Deshmukh, A., Deshmukh, Talluru: A rule-based fuzzy reasoning system for assessing the risk of management fraud. Int. J. Intell. Syst. Account. Financ. Manag. 7(4), 223–241 (1998)Google Scholar
  97. 97.
    Bai, B., Yen, J., Yang, X.: False financial statements: characteristics of China’s listed companies and CART detecting approach. Int. J. Inf. Technol. Decis. Making 7(2), 339–359 (2008)zbMATHGoogle Scholar
  98. 98.
    Lin, J.W., Hwang, M.I., Becker, J.D.: A fuzzy neural network for assessing the risk of fraudulent financial reporting. Manag. Auditing J. 18(8), 657–665 (2003)Google Scholar
  99. 99.
    Holton, C.: Identifying disgruntled employee systems fraud risk through text mining: a simple solution for a multi-billion dollar problem. Decis. Support Syst. 46(4), 853–864 (2009)Google Scholar
  100. 100.
    Koskivaara, E.: Artificial neural networks in auditing: state of the art. ICFAI J. Audit Pract. 1(4), 12–33 (2004)Google Scholar
  101. 101.
    Chen, H.J., Huang, S.Y., Shih, Y.N., Hsiao, C.T.: Discussing the financial fraud factor detection. Chin. Manage. Rev. 12(4), 1–22 (2009)Google Scholar
  102. 102.
    Huang, S.Y., Lin, C.C., Chiu, A.A.: Using data mining techniques to identify and rank the fraud factors. In: American Accounting Association Annual Meeting and Conference on Teaching and Learning in Accounting (2014)Google Scholar
  103. 103.
    Altman, E.L.: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 23(3), 589–609 (1968)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LaRIT Laboratory, Faculty of ScienceIbn Tofail UniversityKenitraMorocco
  2. 2.Tax DepartmentMinistry of Economy and FinanceRabatMorocco

Personalised recommendations