Advertisement

A Hybrid Multilingual Sentiment Classification Using Fuzzy Logic and Semantic Similarity

Conference paper
  • 505 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 915)

Abstract

Classifying tweets into classes (Positive, Negative or neutral) or extracting their sentiments know in recent years a great development, and researchers try to find new methods and approaches that give good results. In this paper, we propose a new hybrid approach based on the semantic similarity using the WordNet dictionary and the fuzzy logic with its three important steps (Fuzzification, Rule Inference/aggregation and Defuzzification) for classifying tweets into three classes: positive, negative or neutral. The experimental results show that our approach outperforms some other methods from the literature.

Keywords

Opinion mining Sentiment analysis Twitter Fuzzy logic Information retrieval systems Semantic similarity Wordnet Big data Hadoop 

References

  1. 1.
    Wang, B., Huang, Y., Wu, X., Li, X. : A fuzzy computing model for identifying polarity of Chinese Sentiment Words. Comput. Intell. Neurosci. (2015). [En ligne]. Disponible sur: https://www.hindawi.com/journals/cin/2015/525437/
  2. 2.
    Wu, K., Zhou, M., Lu, X.S., Huang, L.: A fuzzy logic-based text classification method for social media data. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff Center, Banff, Canada, 5–8 Oct 2017Google Scholar
  3. 3.
    Dragoni, M., Petrucci, G.: A fuzzy-based strategy for multi-domain sentiment analysis. Int. J. Approx. Reason. 93, 59–73 (2018).  https://doi.org/10.1016/j.ijar.2017.10.021MathSciNetCrossRefGoogle Scholar
  4. 4.
    Appel, O., Chiclana, F., Carter, J., Fujita, H.: A hybrid approach to the sentiment analysis problem at the sentence level. Knowl. Based Syst. (2016).  https://doi.org/10.1016/j.knosys.2016.05.040CrossRefGoogle Scholar
  5. 5.
    Sathe, J.B., Mali, M.P.: A hybrid sentiment classification method using neural network and fuzzy logic. In: 2017 11th International Conference on Intelligent Systems and Control (ISCO), pp. 93–96, Jan 2017.  https://doi.org/10.1109/ISCO.2017.7855960
  6. 6.
    Madani, Y., Bengourram, J., Erritali, M.: Social login and data storage in the big data file system HDFS. In: Proceedings of the International Conference on Compute and Data Analysis, New York, NY, USA, pp. 91–97 (2017)Google Scholar
  7. 7.
    Madani, Y., Bengourram, J., Erritali, M.: A parallel Semantic sentiment analysis. In: Proceedings of the 3rd International Conference on Cloud Computing Technologies and Applications (CloudTech’17), Rabat, Morocco, 24–26 Oct 2017Google Scholar
  8. 8.
    Madani, Y., Erritali, M., Bengourram, J.: Arabic stemmer based big data. J. Electron. Comm. Organ. (JECO) 16(1), 17–8 (2018).  https://doi.org/10.4018/JECO.2018010102CrossRefGoogle Scholar
  9. 9.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. In Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics, pp. 133–138 (1994)Google Scholar
  10. 10.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI, pp. 448–53 (1995)Google Scholar
  11. 11.
    Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)Google Scholar
  12. 12.
    Hirst, G., St. Onge, D.: Lexical chains as representation of context for the detection and correction malapropisms. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 305–332. The MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Sciences and TechnicsSultan Moulay Slimane UniversityBeni MellalMorocco

Personalised recommendations