Control Reconfiguration

  • Krzysztof PatanEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 197)


The chapter is a description of our contribution in the form of algorithms for fault accommodation and control reconfiguration. The proposed FTC system detects a fault, estimates it and corrects a control law in order to compensate the fault effect observed in the control system. In order to create a control system, it is necessary to take into account the model of a plant as well as the state observer. Both models are designed using neural networks. As a result, the corrected control is obtained by an additional control loop that can influence the stability of the control system. Finally, the chapter also discusses the stability of the proposed control system. The proposed solutions are tested on the examples of a tank unit and two tank laboratory stands.


  1. 1.
    Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer, Berlin (1999)CrossRefGoogle Scholar
  2. 2.
    Czajkowski, A., Patan, K.: Stability analysis of the robust fault tolerant control of the boiler unit using state space neural networks. In: 9th European Workshop on Advanced Control and Diagnosis, Budapest, Hungary, p. 8 (2011)Google Scholar
  3. 3.
    Czajkowski, A., Patan, K., Korbicz, J.: Stability analysis of the neural network based fault tolerant control for the boiler unit. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds.) Artificial Intelligence and Soft Computing: 11th International Conference, ICAISC 2012, Zakopane, Poland, 29 April–3 May 2012, Proceedings, Part II, vol. 7268, pp. 548–556. Springer, Berlin (2012)Google Scholar
  4. 4.
    Czajkowski, A., Patan, K., Szymański, M.: Application of the state space neural network to the fault tolerant control system of the PLC-controlled laboratory stand. Eng. Appl. Artif. Intell. 30, 168–178 (2014)CrossRefGoogle Scholar
  5. 5.
    Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis. Models, Artificial Intelligence, Applications. Springer, Berlin (2004)Google Scholar
  6. 6.
    Kou, P., Zhou, J., Wang, C., Xiao, H., Zhang, H., Li, C.: Parameters identification of nonlinear state space model of synchronous generator. Eng. Appl. Artif. Intell. 24(7), 1227–1237 (2011)CrossRefGoogle Scholar
  7. 7.
    Mendonça, L., Sousa, J., Sá da Costa, J.: Fault tolerant control using a fuzzy predictive approach. Expert Syst. Appl. 39(12), 10630–10638 (2012)Google Scholar
  8. 8.
    Nørgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)Google Scholar
  9. 9.
    Noura, K., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault Tolerant Control Systems. Design and Practical Applications. Advanced in Industrial Control. Springer, London (2009)Google Scholar
  10. 10.
    Patan, K.: Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes. Lecture Notes in Control and Information Sciences. Springer, Berlin (2008)Google Scholar
  11. 11.
    Patan, K., Parisini, T.: Identification of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process. J. Process Control 15, 67–79 (2005)CrossRefGoogle Scholar
  12. 12.
    Patan, K., Witczak, M., Korbicz, J.: Towards robustness in neural network based fault diagnosis. Int. J. Appl. Math. Comput. Sci. 18(4), 443–454 (2008)CrossRefGoogle Scholar
  13. 13.
    Polycarpou, M., Vemuri, A.T.: Learning methodology for failure detection and accommodation. IEEE Control Syst. Mag. 15, 16–24 (1995)CrossRefGoogle Scholar
  14. 14.
    Qian, M., Jiang, B., Xu, D.: Fault tolerant tracking control scheme for UAV using dynamic surface control technique. Circuits Syst. Signal Process. 31(5), 1713–1729 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modeling in robust identification. Automatica 38, 787–803 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schröder, D.: Intelligent Observer and Control Design for Nonlinear Systems. Springer Science and Business Media, Berlin (2000)Google Scholar
  17. 17.
    Tornil-Sin, S., Ocampo-Martinez, C., Puig, V., Escobet, T.: Robust fault detection of non-linear systems using set-membership state estimation based on constraint satisfaction. Eng. Appl. Artif. Intell. 25(1), 1–10 (2012)CrossRefGoogle Scholar
  18. 18.
    Verron, S., Tiplica, T., Kobi, A.: Fault diagnosis of industrial systems by conditional gaussian network including a distance rejection criterion. Eng. Appl. Artif. Intell. 23(7), 1229–1235 (2010)CrossRefGoogle Scholar
  19. 19.
    Yang, H., Jiang, B., Staroswiecki, M.: Supervisory fault tolerant control for a class of uncertain nonlinear systems. Automatica 45(10), 2319–2324 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yang, H., Jiang, B., Cocquempot, V., Lu, L.: Supervisory fault tolerant control with integrated fault detection and isolation: a switched system approach. Appl. Math. Comput. Sci. 22(1), 87–97 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, Q.: Using wavelet networks in nonparametric estimation. IEEE Trans. Neural Netw. 3(2), 227–236 (1997)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y.: Active fault-tolerant control systems: integration of fault diagnosis and reconfigurable control. In: Korbicz, J., Patan, K., Kowal, M. (eds.) Fault Diagnosis and Fault Tolerant Control. Challenging Problems of Science - Theory and Applications: Automatic Control and Robotics, pp. 21–41. Academic Publishing House EXIT, Warsaw (2007). ISBN: 978-83-60434-32-1Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations