Skip to main content

Pituitary Anatomy and Development

  • Chapter
  • First Online:
Prolactin Disorders

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Although descriptions of the pituitary gland can be traced to the second century A.D., major advances continue to be made with respect to elucidating the organization and functional anatomy of this organ system. On the surface, the pituitary gland would appear to be a rather simple structure, containing two lobes (anterior and posterior) that are well visualized by MRI imaging, and gives rise to secreted hormones involved in the regulation of peripheral, target organs. However, the development, organization, and inner workings of the pituitary are vastly complicated. The anterior pituitary is comprised of three subdivisions including the pars distalis, pars intermedia, and pars tuberalis, all derived from Rathke’s pouch, but only the function of the pars distalis is well understood in man. Included among the complexity of pituitary anatomy is an expanding list of factors involved in the development of the anterior pituitary, a somewhat distinct topography for most the classic cell types in the pars distalis, morphological and physiological evidence for heterogeneity among these cells, evidence for cell clustering that may be involved in amplifying signals from the hypothalamus, local regulatory control mechanisms mediated by paracrine and autocrine secretion and modulation by glial-derived cell types, and the presence of stem cells that may be involved in postnatal plasticity of the anterior pituitary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Toni R. The neuroendocrine system: organization and homeostatic role. J Endocrinol Investig. 2004;27:35–47.

    CAS  Google Scholar 

  2. Joshi BC. Neurology in ancient India: ājñā chakra – a physiological reality. Indian J Hist Sci. 1989;22:292–315.

    Google Scholar 

  3. Ray P. Medicine – as it evolved in ancient and mediaeval India. Indian J Hist Sci. 1970;5:86–100.

    CAS  PubMed  Google Scholar 

  4. Toni R, Malaguti A, Benfenati F, Martini L. The human hypothalamus: a morpho-functional perspective. J Endocrinol Investig. 2004;27:73–94.

    CAS  Google Scholar 

  5. Lechan RM, Toni R. Functional anatomy of the hypothalamus and pituitary. 2015/04/24 ed: SourceEndotext [Internet]. South Dartmouth: MDText.com; 2016.

    Google Scholar 

  6. Anderson E, Haymaker W. Breakthroughs in hypothalamic and pituitary research. Prog Brain Res. 1974;41:1–60.

    Article  CAS  PubMed  Google Scholar 

  7. Haymaker W, Anderson E, Nauta WJH. The hypothalamus. Springfield: Charles C. Thomas; 1969.

    Google Scholar 

  8. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toni R. Il sistema ipotalamo-ipofisi nell’antichità [The hypothalamic-pituitary system in the antiquity] – Dedicato alla memoria del Prof. Aldo Pinchera [Dedicated to the memory of Prof. Aldo Pinchera]. L’Endocrinologo. 2012;13:1–11.

    Google Scholar 

  10. Toni R. Ancient views on the hypothalamic-pituitary-thyroid axis: an historical and epistemological perspective. Pituitary. 2000;3:83–95.

    Article  CAS  PubMed  Google Scholar 

  11. Bargmann W. The neurosecretory connection between the hypothalamus and the neurohypophysis. Z Zellforsch Mikrosk Anat. 1949;34:610–34.

    CAS  PubMed  Google Scholar 

  12. Umansky F, Nathan H. The lateral wall of the cavernous sinus. With special reference to the nerves related to it. J Neurosurg. 1982;56:228–34.

    Article  CAS  PubMed  Google Scholar 

  13. Songtao Q, Yuntao L, Jun P, Chuanping H, Xiaofeng S. Membranous layers of the pituitary gland: histological anatomic study and related clinical issues. Neurosurgery. 2009;64:ons1–9; discussion ons9–10.

    PubMed  Google Scholar 

  14. Rhoton AL Jr. The sellar region. Neurosurgery. 2002;51:S335–74.

    Article  PubMed  Google Scholar 

  15. Patel CR, Fernandez-Miranda JC, Wang WH, Wang EW. Skull base anatomy. Otolaryngol Clin N Am. 2016;49:9–20.

    Article  Google Scholar 

  16. Hong GK, Payne SC, Jane JA Jr. Anatomy, physiology, and laboratory evaluation of the pituitary gland. Otolaryngol Clin N Am. 2016;49:21–32.

    Article  Google Scholar 

  17. Isolan GR, de Aguiar PH, Laws ER, Strapasson AC, Piltcher O. The implications of microsurgical anatomy for surgical approaches to the sellar region. Pituitary. 2009;12:360–7.

    Article  PubMed  Google Scholar 

  18. Laws ER Jr, Kern EB. Complications of trans-sphenoidal surgery. Clin Neurosurg. 1976;23:401–16.

    Article  PubMed  Google Scholar 

  19. Abele TA, Salzman KL, Harnsberger HR, Glastonbury CM. Craniopharyngeal canal and its spectrum of pathology. AJNR Am J Neuroradiol. 2014;35:772–7.

    Article  CAS  PubMed  Google Scholar 

  20. Arey LB. The craniopharyngeal canal reviewed and reinterpreted. Anat Rec. 1950;106:1–16.

    Article  CAS  PubMed  Google Scholar 

  21. Cave AJ. The craniopharyngeal canal in man and anthropoids. J Anat. 1931;65:363–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Amar AP, Weiss MH. Pituitary anatomy and physiology. Neurosurg Clin N Am. 2003;14:11–23, v.

    Article  PubMed  Google Scholar 

  23. Sahni D, Jit I, Harjeet N, Bhansali A. Weight and dimensions of the pituitary in northwestern Indians. Pituitary. 2006;9:19–26.

    Article  PubMed  Google Scholar 

  24. Bergland RM, Ray BS, Torack RM. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg. 1968;28:93–9.

    Article  CAS  PubMed  Google Scholar 

  25. Takano K, Utsunomiya H, Ono H, Ohfu M, Okazaki M. Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR Am J Neuroradiol. 1999;20:312–5.

    CAS  PubMed  Google Scholar 

  26. MacMaster FP, Keshavan M, Mirza Y, Carrey N, Upadhyaya AR, El-Sheikh R, Buhagiar CJ, Taormina SP, Boyd C, Lynch M, Rose M, Ivey J, Moore GJ, Rosenberg DR. Development and sexual dimorphism of the pituitary gland. Life Sci. 2007;80:940–4.

    Article  CAS  PubMed  Google Scholar 

  27. Peker S, Kurtkaya-Yapicier O, Kilic T, Pamir MN. Microsurgical anatomy of the lateral walls of the pituitary fossa. Acta Neurochir. 2005;147:641–8; discussion 649.

    Article  CAS  PubMed  Google Scholar 

  28. Horvath E, Kovacs K. The adenophyophysis. In: Kovacs K, Asa SL, editors. Fuctional endocrine pathology. Cambridge, MA: Blackwell Scientific Publications; 1991. p. 245–81.

    Google Scholar 

  29. Stanfield JP. The blood supply of the human pituitary gland. J Anat. 1960;94:257–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ceylan S, Anik I, Koc K, Kokturk S, Cine N, Savli H, Sirin G, Sam B, Gazioglu N. Microsurgical anatomy of membranous layers of the pituitary gland and the expression of extracellular matrix collagenous proteins. Acta Neurochir. 2011;153:2435–43; discussion 2443.

    Article  PubMed  Google Scholar 

  31. Baker BL. Cellular composition of the human pituitary pars tuberalis as revealed by immunocytochemistry. Cell Tissue Res. 1977;182:151–63.

    Article  CAS  PubMed  Google Scholar 

  32. Melchionna RH, Moore RA. The pharyngeal pituitary gland. Am J Pathol. 1938;14:763–72, 761.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Richards SH, Evans IT. The pharyngeal hypophysis and its surgical significance. J Laryngol Otol. 1974;88:937–46.

    Article  CAS  PubMed  Google Scholar 

  34. Puy LA, Ciocca DR. Human pharyngeal and sellar pituitary glands: differences and similarities revealed by an immunocytochemical study. J Endocrinol. 1986;108:231–8.

    Article  CAS  PubMed  Google Scholar 

  35. McGrath P. Volume and histology of the human pharyngeal hypophysis. Aust N Z J Surg. 1967;37:16–27.

    Article  CAS  PubMed  Google Scholar 

  36. Ciocca DR, Puy LA, Stati AO. Identification of seven hormone-producing cell types in the human pharyngeal hypophysis. J Clin Endocrinol Metab. 1985;60:212–6.

    Article  CAS  PubMed  Google Scholar 

  37. McGrath P. Vascularity of the environs of the human pharyngeal hypophysis as a possible indication of the mechanism of its control. J Anat. 1972;112:185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McGrath P. The trans-sphenoidal vascular route in relation to the human pharyngeal hypophysis. J Anat. 1972;113:383–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciocca DR, Puy LA, Stati AO. Immunocytochemical evidence for the ability of the human pharyngeal hypophysis to respond to change in endocrine feedback. Virchows Arch A Pathol Anat Histopathol. 1985;405:497–502.

    Article  CAS  PubMed  Google Scholar 

  40. Xuereb GP, Prichard MM, Daniel PM. The arterial supply and venous drainage of the human hypophysis cerebri. Q J Exp Physiol Cogn Med Sci. 1954;39:199–217.

    CAS  PubMed  Google Scholar 

  41. Leclercq TA, Grisoli F. Arterial blood supply of the normal human pituitary gland. An anatomical study. J Neurosurg. 1983;58:678–81.

    Article  CAS  PubMed  Google Scholar 

  42. McConnell EM. The arterial blood supply of the human hypophysis cerebri. Anat Rec. 1953;115:175–203.

    Article  CAS  PubMed  Google Scholar 

  43. Xuereb GP, Prichard ML, Daniel PM. The hypophysial portal system of vessels in man. Q J Exp Physiol Cogn Med Sci. 1954;39:219–30.

    CAS  PubMed  Google Scholar 

  44. Green HT. The venous drainage of the human hypophysis cerebri. Am J Anat. 1957;100:435–69.

    Article  CAS  PubMed  Google Scholar 

  45. Gilbert MS. Some factors influencing the early development of the mammalian hypophysis. Anat Rec. 1935;62:337–57.

    Article  Google Scholar 

  46. Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol. 2014;389:13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takor TT, Pearse AG. Neuroectodermal origin of avian hypothalamo-hypophyseal complex: the role of the ventral neural ridge. J Embryol Exp Morphol. 1975;34:311–25.

    CAS  PubMed  Google Scholar 

  48. Ravera S, Morigi FP, Coiro M, Della Casa C, Bondi A, Toni R. Chromogranin A as an early marker of neuroendocrine differentiation in the human embryo: evidence for feasibility of the “triune information network” concept on man. It J Anat Embriol. 2005;110:275.

    Google Scholar 

  49. Toni R. A new perspective in neuroendocrine integration: the triune information network (TIN) concept. Proceedings of the First Meeting of the Indian Subcontinent Branch of the International Neuropeptide Society:7–8. 2008

    Google Scholar 

  50. Ikeda H, Suzuki J, Sasano N, Niizuma H. The development and morphogenesis of the human pituitary gland. Anat Embryol (Berl). 1988;178:327–36.

    Article  CAS  Google Scholar 

  51. O’Rahilly R, Muller F. The development of the neural crest in the human. J Anat. 2007;211:335–51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Espinasse PG. The development of the hypophysio-portal system in man. J Anat. 1933;268:11–8.

    Google Scholar 

  53. De Beer GR, editor. The development of the vertebrate skull. London: Oxford University Press; 1937.

    Google Scholar 

  54. Boyd JD. Observations on the human pharyngeal hypophysis. J Endocrinol. 1956;14:66–77.

    Article  CAS  PubMed  Google Scholar 

  55. McGrath P. Aspects of the human pharyngeal hypophysis in normal and anencephalic fetuses and neonates and their possible significance in the mechanism of its control. J Anat. 1978;127:65–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Baker RC, Edwards LF. Early development of the human pharyngeal hypophysis – a preliminary report. Ohio J Sci. 1948;48:241–5.

    Google Scholar 

  57. Pilavdzic D, Kovacs K, Asa SL. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology. 1997;65:164–72.

    Article  CAS  PubMed  Google Scholar 

  58. Asa SL, Ezzat S. Molecular determinants of pituitary cytodifferentiation. Pituitary. 1999;1:159–68.

    Article  CAS  PubMed  Google Scholar 

  59. Bazina M, Vukojevic K, Roje D, Saraga-Babic M. Influence of growth and transcriptional factors, and signaling molecules on early human pituitary development. J Mol Histol. 2009;40:277–86.

    Article  CAS  PubMed  Google Scholar 

  60. Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev. 2009;30:790–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, Daly AZ, Ajmal A, Perez Millan MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev. 2016;37:636–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McCabe MJ, Dattani MT. Genetic aspects of hypothalamic and pituitary gland development. Handb Clin Neurol. 2014;124:3–15.

    Article  PubMed  Google Scholar 

  63. Drouin J. Pituitary development. In: Melmed S, editor. The pituitary. 4th ed. San Diego: Academic; 2017. p. 3–22.

    Chapter  Google Scholar 

  64. Cote M, Salzman KL, Sorour M, Couldwell WT. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J Neurosurg. 2014;120:357–62.

    Article  PubMed  Google Scholar 

  65. Kilday JP, Laughlin S, Urbach S, Bouffet E, Bartels U. Diabetes insipidus in pediatric germinomas of the suprasellar region: characteristic features and significance of the pituitary bright spot. J Neuro-Oncol. 2015;121:167–75.

    Article  Google Scholar 

  66. Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JF, Chiras J. T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics. 2006;26:93–113.

    Article  PubMed  Google Scholar 

  67. Robertson GL. Diabetes insipidus: differential diagnosis and management. Best Pract Res Clin Endocrinol Metab. 2016;30:205–18.

    Article  CAS  PubMed  Google Scholar 

  68. Pecina HI, Pecina TC, Vyroubal V, Kruljac I, Slaus M. Age and sex related differences in normal pituitary gland and fossa volumes. Front Biosci (Elite Ed). 2017;9:204–13.

    Google Scholar 

  69. Lurie SN, Doraiswamy PM, Husain MM, Boyko OB, Ellinwood EH Jr, Figiel GS, Krishnan KR. In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab. 1990;71:505–8.

    Article  CAS  PubMed  Google Scholar 

  70. Doraiswamy PM, Potts JM, Axelson DA, Husain MM, Lurie SN, Na C, Escalona PR, McDonald WM, Figiel GS, Ellinwood EH Jr, et al. MR assessment of pituitary gland morphology in healthy volunteers: age- and gender-related differences. AJNR Am J Neuroradiol. 1992;13:1295–9.

    CAS  PubMed  Google Scholar 

  71. Terano T, Seya A, Tamura Y, Yoshida S, Hirayama T. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion. Clin Endocrinol. 1996;45:273–9.

    Article  CAS  Google Scholar 

  72. Fink AM, Vidmar S, Kumbla S, Pedreira CC, Kanumakala S, Williams C, Carlin JB, Cameron FJ. Age-related pituitary volumes in prepubertal children with normal endocrine function: volumetric magnetic resonance data. J Clin Endocrinol Metab. 2005;90:3274–8.

    Article  CAS  PubMed  Google Scholar 

  73. Elster AD. Modern imaging of the pituitary. Radiology. 1993;187:1–14.

    Article  CAS  PubMed  Google Scholar 

  74. Castillo M. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols. Top Magn Reson Imaging. 2005;16:259–68.

    Article  PubMed  Google Scholar 

  75. Dinc H, Esen F, Demirci A, Sari A, Resit Gumele H. Pituitary dimensions and volume measurements in pregnancy and postpartum. MR assessment. Acta Radiol. 1998;39:64–9.

    CAS  PubMed  Google Scholar 

  76. Foyouzi N, Frisbaek Y, Norwitz ER. Pituitary gland and pregnancy. Obstet Gynecol Clin N Am. 2004;31:873–92, xi.

    Article  Google Scholar 

  77. Axelson DA, Doraiswamy PM, Boyko OB, Rodrigo Escalona P, McDonald WM, Ritchie JC, Patterson LJ, Ellinwood EH Jr, Nemeroff CB, Krishnan KR. In vivo assessment of pituitary volume with magnetic resonance imaging and systematic stereology: relationship to dexamethasone suppression test results in patients. Psychiatry Res. 1992;44:63–70.

    Article  CAS  PubMed  Google Scholar 

  78. Mineura K, Goto T, Yoneya M, Kowada M, Tamakawa Y, Kagaya H. Pituitary enlargement associated with Addison’s disease. Clin Radiol. 1987;38:435–7.

    Article  CAS  PubMed  Google Scholar 

  79. Soni BK, Joish UK, Sahni H, George RA, Sivasankar R, Aggarwal R. A comparative study of pituitary volume variations in MRI in acute onset of psychiatric conditions. J Clin Diagn Res. 2017;11:TC01–4.

    PubMed  PubMed Central  Google Scholar 

  80. Ramji S, Touska P, Rich P, MacKinnon AD. Normal neuroanatomical variants that may be misinterpreted as disease entities. Clin Radiol. 2017;72:810–25.

    Article  CAS  PubMed  Google Scholar 

  81. Satogami N, Miki Y, Koyama T, Kataoka M, Togashi K. Normal pituitary stalk: high-resolution MR imaging at 3T. AJNR Am J Neuroradiol. 2010;31:355–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ahmadi H, Larsson EM, Jinkins JR. Normal pituitary gland: coronal MR imaging of infundibular tilt. Radiology. 1990;177:389–92.

    Article  CAS  PubMed  Google Scholar 

  83. Yuh WT, Fisher DJ, Nguyen HD, Tali ET, Gao F, Simonson TM, Schlechte JA. Sequential MR enhancement pattern in normal pituitary gland and in pituitary adenoma. AJNR Am J Neuroradiol. 1994;15:101–8.

    CAS  PubMed  Google Scholar 

  84. Rai AR, Rai R, Pc V, Vadgaonkar R, Tonse M. A cephalometric analysis on magnitudes and shape of Sella Turcica. J Craniofac Surg. 2016;27:1317–20.

    Article  PubMed  Google Scholar 

  85. Wang H, Hou B, Lu L, Feng M, Zang J, Yao S, Feng F, Wang R, Li F, Zhu Z. PET/MR imaging in the diagnosis of hormone-producing pituitary micro-adenoma: a prospective pilot study. J Nucl Med. 2017;59:523–8.

    Article  PubMed  CAS  Google Scholar 

  86. Wong AO, Ng S, Lee EK, Leung RC, Ho WK. Somatostatin inhibits (d-Arg6, Pro9-NEt) salmon gonadotropin-releasing hormone- and dopamine D1-stimulated growth hormone release from perifused pituitary cells of Chinese grass carp, Ctenopharyngodon idellus. Gen Comp Endocrinol. 1998;110:29–45.

    Article  CAS  PubMed  Google Scholar 

  87. Mitrofanova LB, Konovalov PV, Krylova JS, Polyakova VO, Kvetnoy IM. Plurihormonal cells of normal anterior pituitary: facts and conclusions. Oncotarget. 2017;8:29282–99.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Neumann PE, Horoupian DS, Goldman JE, Hess MA. Cytoplasmic filaments of Crooke’s hyaline change belong to the cytokeratin class. An immunocytochemical and ultrastructural study. Am J Pathol. 1984;116:214–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mete O, Asa SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol. 2012;22:443–53.

    Article  PubMed  Google Scholar 

  90. Horvath E, Kovacs K. Fine structural cytology of the adenohypophysis in rat and man. J Electron Microsc Tech. 1988;8:401–32.

    Article  CAS  PubMed  Google Scholar 

  91. Losinski NE, Horvath E, Kovacs K, Asa SL. Immunoelectron microscopic evidence of mammosomatotrophs in human adult and fetal adenohypophyses, rat adenohypophyses and human and rat pituitary adenomas. Anat Anz. 1991;172:11–6.

    CAS  PubMed  Google Scholar 

  92. Sjostedt E, Bollerslev J, Mulder J, Lindskog C, Ponten F, Casar-Borota O. A specific antibody to detect transcription factor T-Pit: a reliable marker of corticotroph cell differentiation and a tool to improve the classification of pituitary neuroendocrine tumours. Acta Neuropathol. 2017;134:675–7.

    Article  PubMed  CAS  Google Scholar 

  93. Lloyd RV, Osamura RY. Transcription factors in normal and neoplastic pituitary tissues. Microsc Res Tech. 1997;39:168–81.

    Article  CAS  PubMed  Google Scholar 

  94. Lee M, Marinoni I, Irmler M, Psaras T, Honegger JB, Beschorner R, Anastasov N, Beckers J, Theodoropoulou M, Roncaroli F, Pellegata NS. Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas. Acta Neuropathol. 2013;126:137–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McDonald WC, Banerji N, McDonald KN, Ho B, Macias V, Kajdacsy-Balla A. Steroidogenic factor 1, Pit-1, and adrenocorticotropic hormone: a rational starting place for the immunohistochemical characterization of pituitary adenoma. Arch Pathol Lab Med. 2017;141:104–12.

    Article  CAS  PubMed  Google Scholar 

  96. Snyder G, Hymer WC, Snyder J. Functional heterogeneity in somatotrophs isolated from the rat anterior pituitary. Endocrinology. 1977;101:788–99.

    Article  CAS  PubMed  Google Scholar 

  97. Nikitovitch-Winer MB, Atkin J, Maley BE. Colocalization of prolactin and growth hormone within specific adenohypophyseal cells in male, female, and lactating female rats. Endocrinology. 1987;121:625–30.

    Article  CAS  PubMed  Google Scholar 

  98. Frawley LS, Clark CL, Schoderbek WE, Hoeffler JP, Boockfor FR. A novel bioassay for lactogenic activity: demonstration that prolactin cells differ from one another in bio- and immuno-potencies of secreted hormone. Endocrinology. 1986;119:2867–9.

    Article  CAS  PubMed  Google Scholar 

  99. Le Tissier P, Campos P, Lafont C, Romano N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol. 2017;13:257–67.

    Article  PubMed  CAS  Google Scholar 

  100. Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol. 2012;33:252–66.

    Article  PubMed  CAS  Google Scholar 

  101. Hodson DJ, Molino F, Fontanaud P, Bonnefont X, Mollard P. Investigating and modelling pituitary endocrine network function. J Neuroendocrinol. 2010;22:1217–25.

    Article  CAS  PubMed  Google Scholar 

  102. Denef C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol. 2008;20:1–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakane PK. Classifications of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem. 1970;18:9–20.

    Article  CAS  PubMed  Google Scholar 

  104. Denef C, Andries M. Evidence for paracrine interaction between gonadotrophs and lactotrophs in pituitary cell aggregates. Endocrinology. 1983;112:813–22.

    Article  CAS  PubMed  Google Scholar 

  105. Van Bael A, Vande Vijver V, Devreese B, Van Beeumen J, Denef C. N-terminal 10- and 12-kDa POMC fragments stimulate differentiation of lactotrophs. Peptides. 1996;17:1219–28.

    Article  PubMed  Google Scholar 

  106. Fraser RA, Siminoski K, Harvey S. Growth hormone receptor gene: novel expression in pituitary tissue. J Endocrinol. 1991;128:R9–11.

    Article  CAS  PubMed  Google Scholar 

  107. Devnath S, Inoue K. An insight to pituitary folliculo-stellate cells. J Neuroendocrinol. 2008;20:687–91.

    Article  CAS  PubMed  Google Scholar 

  108. Vitale ML, Garcia CJ, Akpovi CD, Pelletier RM. Distinctive actions of connexin 46 and connexin 50 in anterior pituitary folliculostellate cells. PLoS One. 2017;12:e0182495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Arzt E, Pereda MP, Castro CP, Pagotto U, Renner U, Stalla GK. Pathophysiological role of the cytokine network in the anterior pituitary gland. Front Neuroendocrinol. 1999;20:71–95.

    Article  CAS  PubMed  Google Scholar 

  110. Hentges S, Boyadjieva N, Sarkar DK. Transforming growth factor-beta3 stimulates lactotrope cell growth by increasing basic fibroblast growth factor from folliculo-stellate cells. Endocrinology. 2000;141:859–67.

    Article  CAS  PubMed  Google Scholar 

  111. Guillou A, Romano N, Bonnefont X, Le Tissier P, Mollard P, Martin AO. Modulation of the tyrosine kinase receptor Ret/glial cell-derived neurotrophic factor (GDNF) signaling: a new player in reproduction induced anterior pituitary plasticity? Endocrinology. 2011;152:515–25.

    Article  CAS  PubMed  Google Scholar 

  112. Lyles D, Tien JH, McCobb DP, Zeeman ML. Pituitary network connectivity as a mechanism for the luteinising hormone surge. J Neuroendocrinol. 2010;22:1267–78.

    Article  CAS  PubMed  Google Scholar 

  113. Tsukada T, Azuma M, Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T. Folliculostellate cell interacts with pericyte via TGFbeta2 in rat anterior pituitary. J Endocrinol. 2016;229:159–70.

    Article  CAS  PubMed  Google Scholar 

  114. Tsukada T, Fujiwara K, Horiguchi K, Azuma M, Ramadhani D, Tofrizal A, Batchuluun K, Maliza R, Syaidah R, Kikuchi M, Yashiro T. Folliculostellate cells are required for laminin release from gonadotrophs in rat anterior pituitary. Acta Histochem Cytochem. 2014;47:239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rizzoti K. Adult pituitary progenitors/stem cells: from in vitro characterization to in vivo function. Eur J Neurosci. 2010;32:2053–62.

    Article  PubMed  Google Scholar 

  116. Saland LC. The mammalian pituitary intermediate lobe: an update on innervation and regulation. Brain Res Bull. 2001;54:587–93.

    Article  CAS  PubMed  Google Scholar 

  117. Fan X, Olson SJ, Johnson MD. Immunohistochemical localization and comparison of carboxypeptidases D, E, and Z, alpha-MSH, ACTH, and MIB-1 between human anterior and corticotroph cell “basophil invasion” of the posterior pituitary. J Histochem Cytochem. 2001;49:783–90.

    Article  CAS  PubMed  Google Scholar 

  118. Bicknell AB. The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol. 2008;20:692–9.

    Article  CAS  PubMed  Google Scholar 

  119. Daikoku S, Kawano H, Abe K, Yoshinaga K. Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch Histol Jpn. 1981;44:103–16.

    Article  CAS  PubMed  Google Scholar 

  120. Szabo K, Csanyi K. The vascular architecture of the developing pituitary-median eminence complex in the rat. Cell Tissue Res. 1982;224:563–77.

    Article  CAS  PubMed  Google Scholar 

  121. Lamacz M, Tonon MC, Louiset E, Cazin L, Vaudry H. The intermediate lobe of the pituitary, model of neuroendocrine communication. Arch Int Physiol Biochim Biophys. 1991;99:205–19.

    CAS  PubMed  Google Scholar 

  122. Goudreau JL, Lindley SE, Lookingland KJ, Moore KE. Evidence that hypothalamic periventricular dopamine neurons innervate the intermediate lobe of the rat pituitary. Neuroendocrinology. 1992;56:100–5.

    Article  CAS  PubMed  Google Scholar 

  123. Makarenko IG, Ugrumov MV, Calas A. Axonal projections from the hypothalamus to the pituitary intermediate lobe in rats during ontogenesis: DiI tracing study. Brain Res Dev Brain Res. 2005;155:117–26.

    Article  CAS  PubMed  Google Scholar 

  124. Palkovits M, Mezey E, Chiueh CG, Krieger DT, Gallatz K, Brownstein MJ. Serotonin-containing elements of the rat pituitary intermediate lobe. Neuroendocrinology. 1986;42:522–5.

    Article  CAS  PubMed  Google Scholar 

  125. Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castano JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol. 2009;164:40–50.

    Article  CAS  PubMed  Google Scholar 

  126. Pivonello R, Waaijers M, Kros JM, Pivonello C, de Angelis C, Cozzolino A, Colao A, Lamberts SWJ, Hofland LJ. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland. Endocrine. 2017;57:314–25.

    Article  CAS  PubMed  Google Scholar 

  127. Hopker VH, Kjaer B, Varon S. Dopaminergic regulation of BDNF content in the pituitary intermediate lobe. Neuroreport. 1997;8:1089–93.

    Article  CAS  PubMed  Google Scholar 

  128. Nakakura T, Suzuki M, Watanabe Y, Tanaka S. Possible involvement of brain-derived neurotrophic factor (BDNF) in the innervation of dopaminergic neurons from the rat periventricular nucleus to the pars intermedia. Zool Sci. 2007;24:1086–93.

    Article  CAS  PubMed  Google Scholar 

  129. Hadley ME, Davis MD, Morgan CM. Cellular control of melanocyte stimulating hormone secretion. Front Horm Res. 1977;4:94–104.

    Article  CAS  PubMed  Google Scholar 

  130. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One. 2009;4:e4815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology. 2015;101:175–92.

    Article  CAS  PubMed  Google Scholar 

  132. Rizzoti K, Akiyama H, Lovell-Badge R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell. 2013;13:419–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wood S, Loudon A. The pars tuberalis: the site of the circannual clock in mammals? Gen Comp Endocrinol. 2017;27:95–112.

    Google Scholar 

  134. Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol. 2017;258:236–43.

    Article  PubMed  CAS  Google Scholar 

  135. Azzali G, Arcari ML, Cacchioli A, Toni R. Fine structure and photoperiodical seasonal changes in Pars tuberalis of hibernating bats. Ital J Anat Embryol. 2003;108:49–64.

    PubMed  Google Scholar 

  136. Yasuo S, Unfried C, Kettner M, Geisslinger G, Korf HW. Localization of an endocannabinoid system in the hypophysial pars tuberalis and pars distalis of man. Cell Tissue Res. 2010;342:273–81.

    Article  CAS  PubMed  Google Scholar 

  137. Bockmann J, Bockers TM, Winter C, Wittkowski W, Winterhoff H, Deufel T, Kreutz MR. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3,5,3′-triiodothyronine, thyrotropin-releasing hormone, and pit-1 independent. Endocrinology. 1997;138:1019–28.

    Article  CAS  PubMed  Google Scholar 

  138. Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G. Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res. 2015;58:397–417.

    Article  CAS  PubMed  Google Scholar 

  139. Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pevet P, Masson-Pevet M. The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem. 2002;50:1647–57.

    Article  CAS  PubMed  Google Scholar 

  140. Hanon EA, Routledge K, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol. 2010;22:51–5.

    Article  CAS  PubMed  Google Scholar 

  141. Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T. T(3) implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res. 2006;324:175–9.

    Article  CAS  PubMed  Google Scholar 

  142. Dupre SM. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology. 2011;94:101–12.

    Article  CAS  PubMed  Google Scholar 

  143. Sanchez E, Singru PS, Wittmann G, Nouriel SS, Barrett P, Fekete C, Lechan RM. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151:3827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cota D. The role of the endocannabinoid system in the regulation of hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinol. 2008;20(Suppl 1):35–8.

    Article  CAS  PubMed  Google Scholar 

  145. Jafarpour A, Dehghani F, Korf HW. Identification of an endocannabinoid system in the rat pars tuberalis-a possible interface in the hypothalamic-pituitary-adrenal system? Cell Tissue Res. 2017;368:115–23.

    Article  CAS  PubMed  Google Scholar 

  146. Brown CH. Magnocellular neurons and posterior pituitary function. Compr Physiol. 2016;6:1701–41.

    Article  PubMed  Google Scholar 

  147. Garten LL, Sofroniew MV, Dyball RE. A direct catecholaminergic projection from the brainstem to the neurohypophysis of the rat. Neuroscience. 1989;33:149–55.

    Article  CAS  PubMed  Google Scholar 

  148. Shuster SJ, Riedl M, Li X, Vulchanova L, Elde R. The kappa opioid receptor and dynorphin co-localize in vasopressin magnocellular neurosecretory neurons in guinea-pig hypothalamus. Neuroscience. 2000;96:373–83.

    Article  CAS  PubMed  Google Scholar 

  149. Peters LL, Hoefer MT, Ben-Jonathan N. The posterior pituitary: regulation of anterior pituitary prolactin secretion. Science. 1981;213:659–61.

    Article  CAS  PubMed  Google Scholar 

  150. Gross PM, Joneja MG, Pang JJ, Polischuk TM, Shaver SW, Wainman DS. Topography of short portal vessels in the rat pituitary gland: a scanning electron-microscopic and morphometric study of corrosion cast replicas. Cell Tissue Res. 1993;272:79–88.

    Article  CAS  PubMed  Google Scholar 

  151. Wei XY, Zhao CH, Liu YY, Wang YZ, Ju G. Immuohistochemical markers for pituicyte. Neurosci Lett. 2009;465:27–30.

    Article  CAS  PubMed  Google Scholar 

  152. Hatton GI. Pituicytes, glia and control of terminal secretion. J Exp Biol. 1988;139:67–79.

    CAS  PubMed  Google Scholar 

  153. Kawasaki M, Saito J, Hashimoto H, Suzuki H, Otsubo H, Fujihara H, Ohnishi H, Nakamura T, Ueta Y. Induction of the galanin-like peptide gene expression in the posterior pituitary gland after acute osmotic stimulus in rats. Neurosci Lett. 2007;419:125–30.

    Article  CAS  PubMed  Google Scholar 

  154. Onaka T, Kuramochi M, Saito J, Ueta Y, Yada T. Galanin-like peptide stimulates vasopressin, oxytocin and adrenocorticotropic hormone release in rats. Neuroreport. 2005;16:243–7.

    Article  CAS  PubMed  Google Scholar 

  155. Hussy N. Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. Prog Brain Res. 2002;139:95–112.

    Article  CAS  PubMed  Google Scholar 

  156. Rosso L, Mienville JM. Pituicyte modulation of neurohormone output. Glia. 2009;57:235–43.

    Article  PubMed  Google Scholar 

  157. O’Malley CD, de CM Saunders JB. Leonardo on the human body. New York: Dover Publications; 1983.

    Google Scholar 

  158. Meshberger FL. An interpretation of Michelangelo’s creation of Adam based on neuroanatomy. JAMA. 1990;264:1837–41.

    Article  CAS  PubMed  Google Scholar 

  159. Di Iorgi N, Morana G, Allegri AE, Napoli F, Gastaldi R, Calcagno A, Patti G, Loche S, Maghnie M. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract Res Clin Endocrinol Metab. 2016;30:705–36.

    Article  PubMed  CAS  Google Scholar 

  160. Giordano M. Genetic causes of isolated and combined pituitary hormone deficiency. Best Pract Res Clin Endocrinol Metab. 2016;30:679–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Fulvio Barbaro, Elia Consolini, Marco Alfieri, and Davide Dallatana, Section of Human Anatomy and Museum BIOMED, University of Parma Parma, Italy, for invaluable help in preparing and photographing the anatomical material on the skull, cranial base, and microvascular anatomy of the human pituitary gland, and Dr. Arthur Tischler, Professor of Pathology, Tufts Medical Center, for his assistance with the histochemical preparations of the anterior pituitary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Lechan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lechan, R.M., Arkun, K., Toni, R. (2019). Pituitary Anatomy and Development. In: Tritos, N., Klibanski, A. (eds) Prolactin Disorders. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-11836-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11836-5_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-11835-8

  • Online ISBN: 978-3-030-11836-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics