Advertisement

Pituitary Anatomy and Development

  • Ronald M. LechanEmail author
  • Knarik Arkun
  • Roberto Toni
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Although descriptions of the pituitary gland can be traced to the second century A.D., major advances continue to be made with respect to elucidating the organization and functional anatomy of this organ system. On the surface, the pituitary gland would appear to be a rather simple structure, containing two lobes (anterior and posterior) that are well visualized by MRI imaging, and gives rise to secreted hormones involved in the regulation of peripheral, target organs. However, the development, organization, and inner workings of the pituitary are vastly complicated. The anterior pituitary is comprised of three subdivisions including the pars distalis, pars intermedia, and pars tuberalis, all derived from Rathke’s pouch, but only the function of the pars distalis is well understood in man. Included among the complexity of pituitary anatomy is an expanding list of factors involved in the development of the anterior pituitary, a somewhat distinct topography for most the classic cell types in the pars distalis, morphological and physiological evidence for heterogeneity among these cells, evidence for cell clustering that may be involved in amplifying signals from the hypothalamus, local regulatory control mechanisms mediated by paracrine and autocrine secretion and modulation by glial-derived cell types, and the presence of stem cells that may be involved in postnatal plasticity of the anterior pituitary.

Keywords

Anterior pituitary Cavernous sinus Corticotroph Folliculostellate cell Gonadotroph Lactotroph Pars distalis Pars intermedia Pars tuberalis Pituicyte Pituitary anatomy Pituitary development Pituitary stalk Posterior pituitary Rathke’s pouch Sellar region Somatotroph Thyrotroph 

Notes

Acknowledgements

We wish to thank Fulvio Barbaro, Elia Consolini, Marco Alfieri, and Davide Dallatana, Section of Human Anatomy and Museum BIOMED, University of Parma Parma, Italy, for invaluable help in preparing and photographing the anatomical material on the skull, cranial base, and microvascular anatomy of the human pituitary gland, and Dr. Arthur Tischler, Professor of Pathology, Tufts Medical Center, for his assistance with the histochemical preparations of the anterior pituitary.

References

  1. 1.
    Toni R. The neuroendocrine system: organization and homeostatic role. J Endocrinol Investig. 2004;27:35–47.Google Scholar
  2. 2.
    Joshi BC. Neurology in ancient India: ājñā chakra – a physiological reality. Indian J Hist Sci. 1989;22:292–315.Google Scholar
  3. 3.
    Ray P. Medicine – as it evolved in ancient and mediaeval India. Indian J Hist Sci. 1970;5:86–100.PubMedGoogle Scholar
  4. 4.
    Toni R, Malaguti A, Benfenati F, Martini L. The human hypothalamus: a morpho-functional perspective. J Endocrinol Investig. 2004;27:73–94.Google Scholar
  5. 5.
    Lechan RM, Toni R. Functional anatomy of the hypothalamus and pituitary. 2015/04/24 ed: SourceEndotext [Internet]. South Dartmouth: MDText.com; 2016.Google Scholar
  6. 6.
    Anderson E, Haymaker W. Breakthroughs in hypothalamic and pituitary research. Prog Brain Res. 1974;41:1–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Haymaker W, Anderson E, Nauta WJH. The hypothalamus. Springfield: Charles C. Thomas; 1969.Google Scholar
  8. 8.
    Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Toni R. Il sistema ipotalamo-ipofisi nell’antichità [The hypothalamic-pituitary system in the antiquity] – Dedicato alla memoria del Prof. Aldo Pinchera [Dedicated to the memory of Prof. Aldo Pinchera]. L’Endocrinologo. 2012;13:1–11.Google Scholar
  10. 10.
    Toni R. Ancient views on the hypothalamic-pituitary-thyroid axis: an historical and epistemological perspective. Pituitary. 2000;3:83–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Bargmann W. The neurosecretory connection between the hypothalamus and the neurohypophysis. Z Zellforsch Mikrosk Anat. 1949;34:610–34.PubMedGoogle Scholar
  12. 12.
    Umansky F, Nathan H. The lateral wall of the cavernous sinus. With special reference to the nerves related to it. J Neurosurg. 1982;56:228–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Songtao Q, Yuntao L, Jun P, Chuanping H, Xiaofeng S. Membranous layers of the pituitary gland: histological anatomic study and related clinical issues. Neurosurgery. 2009;64:ons1–9; discussion ons9–10.PubMedGoogle Scholar
  14. 14.
    Rhoton AL Jr. The sellar region. Neurosurgery. 2002;51:S335–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Patel CR, Fernandez-Miranda JC, Wang WH, Wang EW. Skull base anatomy. Otolaryngol Clin N Am. 2016;49:9–20.CrossRefGoogle Scholar
  16. 16.
    Hong GK, Payne SC, Jane JA Jr. Anatomy, physiology, and laboratory evaluation of the pituitary gland. Otolaryngol Clin N Am. 2016;49:21–32.CrossRefGoogle Scholar
  17. 17.
    Isolan GR, de Aguiar PH, Laws ER, Strapasson AC, Piltcher O. The implications of microsurgical anatomy for surgical approaches to the sellar region. Pituitary. 2009;12:360–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Laws ER Jr, Kern EB. Complications of trans-sphenoidal surgery. Clin Neurosurg. 1976;23:401–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Abele TA, Salzman KL, Harnsberger HR, Glastonbury CM. Craniopharyngeal canal and its spectrum of pathology. AJNR Am J Neuroradiol. 2014;35:772–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Arey LB. The craniopharyngeal canal reviewed and reinterpreted. Anat Rec. 1950;106:1–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Cave AJ. The craniopharyngeal canal in man and anthropoids. J Anat. 1931;65:363–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Amar AP, Weiss MH. Pituitary anatomy and physiology. Neurosurg Clin N Am. 2003;14:11–23, v.PubMedCrossRefGoogle Scholar
  23. 23.
    Sahni D, Jit I, Harjeet N, Bhansali A. Weight and dimensions of the pituitary in northwestern Indians. Pituitary. 2006;9:19–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Bergland RM, Ray BS, Torack RM. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg. 1968;28:93–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Takano K, Utsunomiya H, Ono H, Ohfu M, Okazaki M. Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR Am J Neuroradiol. 1999;20:312–5.PubMedGoogle Scholar
  26. 26.
    MacMaster FP, Keshavan M, Mirza Y, Carrey N, Upadhyaya AR, El-Sheikh R, Buhagiar CJ, Taormina SP, Boyd C, Lynch M, Rose M, Ivey J, Moore GJ, Rosenberg DR. Development and sexual dimorphism of the pituitary gland. Life Sci. 2007;80:940–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Peker S, Kurtkaya-Yapicier O, Kilic T, Pamir MN. Microsurgical anatomy of the lateral walls of the pituitary fossa. Acta Neurochir. 2005;147:641–8; discussion 649.PubMedCrossRefGoogle Scholar
  28. 28.
    Horvath E, Kovacs K. The adenophyophysis. In: Kovacs K, Asa SL, editors. Fuctional endocrine pathology. Cambridge, MA: Blackwell Scientific Publications; 1991. p. 245–81.Google Scholar
  29. 29.
    Stanfield JP. The blood supply of the human pituitary gland. J Anat. 1960;94:257–73.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ceylan S, Anik I, Koc K, Kokturk S, Cine N, Savli H, Sirin G, Sam B, Gazioglu N. Microsurgical anatomy of membranous layers of the pituitary gland and the expression of extracellular matrix collagenous proteins. Acta Neurochir. 2011;153:2435–43; discussion 2443.PubMedCrossRefGoogle Scholar
  31. 31.
    Baker BL. Cellular composition of the human pituitary pars tuberalis as revealed by immunocytochemistry. Cell Tissue Res. 1977;182:151–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Melchionna RH, Moore RA. The pharyngeal pituitary gland. Am J Pathol. 1938;14:763–72, 761.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Richards SH, Evans IT. The pharyngeal hypophysis and its surgical significance. J Laryngol Otol. 1974;88:937–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Puy LA, Ciocca DR. Human pharyngeal and sellar pituitary glands: differences and similarities revealed by an immunocytochemical study. J Endocrinol. 1986;108:231–8.PubMedCrossRefGoogle Scholar
  35. 35.
    McGrath P. Volume and histology of the human pharyngeal hypophysis. Aust N Z J Surg. 1967;37:16–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Ciocca DR, Puy LA, Stati AO. Identification of seven hormone-producing cell types in the human pharyngeal hypophysis. J Clin Endocrinol Metab. 1985;60:212–6.PubMedCrossRefGoogle Scholar
  37. 37.
    McGrath P. Vascularity of the environs of the human pharyngeal hypophysis as a possible indication of the mechanism of its control. J Anat. 1972;112:185–93.PubMedPubMedCentralGoogle Scholar
  38. 38.
    McGrath P. The trans-sphenoidal vascular route in relation to the human pharyngeal hypophysis. J Anat. 1972;113:383–90.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ciocca DR, Puy LA, Stati AO. Immunocytochemical evidence for the ability of the human pharyngeal hypophysis to respond to change in endocrine feedback. Virchows Arch A Pathol Anat Histopathol. 1985;405:497–502.PubMedCrossRefGoogle Scholar
  40. 40.
    Xuereb GP, Prichard MM, Daniel PM. The arterial supply and venous drainage of the human hypophysis cerebri. Q J Exp Physiol Cogn Med Sci. 1954;39:199–217.PubMedGoogle Scholar
  41. 41.
    Leclercq TA, Grisoli F. Arterial blood supply of the normal human pituitary gland. An anatomical study. J Neurosurg. 1983;58:678–81.PubMedCrossRefGoogle Scholar
  42. 42.
    McConnell EM. The arterial blood supply of the human hypophysis cerebri. Anat Rec. 1953;115:175–203.PubMedCrossRefGoogle Scholar
  43. 43.
    Xuereb GP, Prichard ML, Daniel PM. The hypophysial portal system of vessels in man. Q J Exp Physiol Cogn Med Sci. 1954;39:219–30.PubMedGoogle Scholar
  44. 44.
    Green HT. The venous drainage of the human hypophysis cerebri. Am J Anat. 1957;100:435–69.PubMedCrossRefGoogle Scholar
  45. 45.
    Gilbert MS. Some factors influencing the early development of the mammalian hypophysis. Anat Rec. 1935;62:337–57.CrossRefGoogle Scholar
  46. 46.
    Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol. 2014;389:13–27.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Takor TT, Pearse AG. Neuroectodermal origin of avian hypothalamo-hypophyseal complex: the role of the ventral neural ridge. J Embryol Exp Morphol. 1975;34:311–25.PubMedGoogle Scholar
  48. 48.
    Ravera S, Morigi FP, Coiro M, Della Casa C, Bondi A, Toni R. Chromogranin A as an early marker of neuroendocrine differentiation in the human embryo: evidence for feasibility of the “triune information network” concept on man. It J Anat Embriol. 2005;110:275.Google Scholar
  49. 49.
    Toni R. A new perspective in neuroendocrine integration: the triune information network (TIN) concept. Proceedings of the First Meeting of the Indian Subcontinent Branch of the International Neuropeptide Society:7–8. 2008Google Scholar
  50. 50.
    Ikeda H, Suzuki J, Sasano N, Niizuma H. The development and morphogenesis of the human pituitary gland. Anat Embryol (Berl). 1988;178:327–36.CrossRefGoogle Scholar
  51. 51.
    O’Rahilly R, Muller F. The development of the neural crest in the human. J Anat. 2007;211:335–51.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Espinasse PG. The development of the hypophysio-portal system in man. J Anat. 1933;268:11–8.Google Scholar
  53. 53.
    De Beer GR, editor. The development of the vertebrate skull. London: Oxford University Press; 1937.Google Scholar
  54. 54.
    Boyd JD. Observations on the human pharyngeal hypophysis. J Endocrinol. 1956;14:66–77.PubMedCrossRefGoogle Scholar
  55. 55.
    McGrath P. Aspects of the human pharyngeal hypophysis in normal and anencephalic fetuses and neonates and their possible significance in the mechanism of its control. J Anat. 1978;127:65–81.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Baker RC, Edwards LF. Early development of the human pharyngeal hypophysis – a preliminary report. Ohio J Sci. 1948;48:241–5.Google Scholar
  57. 57.
    Pilavdzic D, Kovacs K, Asa SL. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology. 1997;65:164–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Asa SL, Ezzat S. Molecular determinants of pituitary cytodifferentiation. Pituitary. 1999;1:159–68.PubMedCrossRefGoogle Scholar
  59. 59.
    Bazina M, Vukojevic K, Roje D, Saraga-Babic M. Influence of growth and transcriptional factors, and signaling molecules on early human pituitary development. J Mol Histol. 2009;40:277–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev. 2009;30:790–829.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, Daly AZ, Ajmal A, Perez Millan MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev. 2016;37:636–75.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    McCabe MJ, Dattani MT. Genetic aspects of hypothalamic and pituitary gland development. Handb Clin Neurol. 2014;124:3–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Drouin J. Pituitary development. In: Melmed S, editor. The pituitary. 4th ed. San Diego: Academic; 2017. p. 3–22.CrossRefGoogle Scholar
  64. 64.
    Cote M, Salzman KL, Sorour M, Couldwell WT. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J Neurosurg. 2014;120:357–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Kilday JP, Laughlin S, Urbach S, Bouffet E, Bartels U. Diabetes insipidus in pediatric germinomas of the suprasellar region: characteristic features and significance of the pituitary bright spot. J Neuro-Oncol. 2015;121:167–75.CrossRefGoogle Scholar
  66. 66.
    Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JF, Chiras J. T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics. 2006;26:93–113.PubMedCrossRefGoogle Scholar
  67. 67.
    Robertson GL. Diabetes insipidus: differential diagnosis and management. Best Pract Res Clin Endocrinol Metab. 2016;30:205–18.PubMedCrossRefGoogle Scholar
  68. 68.
    Pecina HI, Pecina TC, Vyroubal V, Kruljac I, Slaus M. Age and sex related differences in normal pituitary gland and fossa volumes. Front Biosci (Elite Ed). 2017;9:204–13.Google Scholar
  69. 69.
    Lurie SN, Doraiswamy PM, Husain MM, Boyko OB, Ellinwood EH Jr, Figiel GS, Krishnan KR. In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab. 1990;71:505–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Doraiswamy PM, Potts JM, Axelson DA, Husain MM, Lurie SN, Na C, Escalona PR, McDonald WM, Figiel GS, Ellinwood EH Jr, et al. MR assessment of pituitary gland morphology in healthy volunteers: age- and gender-related differences. AJNR Am J Neuroradiol. 1992;13:1295–9.PubMedGoogle Scholar
  71. 71.
    Terano T, Seya A, Tamura Y, Yoshida S, Hirayama T. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion. Clin Endocrinol. 1996;45:273–9.CrossRefGoogle Scholar
  72. 72.
    Fink AM, Vidmar S, Kumbla S, Pedreira CC, Kanumakala S, Williams C, Carlin JB, Cameron FJ. Age-related pituitary volumes in prepubertal children with normal endocrine function: volumetric magnetic resonance data. J Clin Endocrinol Metab. 2005;90:3274–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Elster AD. Modern imaging of the pituitary. Radiology. 1993;187:1–14.PubMedCrossRefGoogle Scholar
  74. 74.
    Castillo M. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols. Top Magn Reson Imaging. 2005;16:259–68.PubMedCrossRefGoogle Scholar
  75. 75.
    Dinc H, Esen F, Demirci A, Sari A, Resit Gumele H. Pituitary dimensions and volume measurements in pregnancy and postpartum. MR assessment. Acta Radiol. 1998;39:64–9.PubMedGoogle Scholar
  76. 76.
    Foyouzi N, Frisbaek Y, Norwitz ER. Pituitary gland and pregnancy. Obstet Gynecol Clin N Am. 2004;31:873–92, xi.CrossRefGoogle Scholar
  77. 77.
    Axelson DA, Doraiswamy PM, Boyko OB, Rodrigo Escalona P, McDonald WM, Ritchie JC, Patterson LJ, Ellinwood EH Jr, Nemeroff CB, Krishnan KR. In vivo assessment of pituitary volume with magnetic resonance imaging and systematic stereology: relationship to dexamethasone suppression test results in patients. Psychiatry Res. 1992;44:63–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Mineura K, Goto T, Yoneya M, Kowada M, Tamakawa Y, Kagaya H. Pituitary enlargement associated with Addison’s disease. Clin Radiol. 1987;38:435–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Soni BK, Joish UK, Sahni H, George RA, Sivasankar R, Aggarwal R. A comparative study of pituitary volume variations in MRI in acute onset of psychiatric conditions. J Clin Diagn Res. 2017;11:TC01–4.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ramji S, Touska P, Rich P, MacKinnon AD. Normal neuroanatomical variants that may be misinterpreted as disease entities. Clin Radiol. 2017;72:810–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Satogami N, Miki Y, Koyama T, Kataoka M, Togashi K. Normal pituitary stalk: high-resolution MR imaging at 3T. AJNR Am J Neuroradiol. 2010;31:355–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Ahmadi H, Larsson EM, Jinkins JR. Normal pituitary gland: coronal MR imaging of infundibular tilt. Radiology. 1990;177:389–92.PubMedCrossRefGoogle Scholar
  83. 83.
    Yuh WT, Fisher DJ, Nguyen HD, Tali ET, Gao F, Simonson TM, Schlechte JA. Sequential MR enhancement pattern in normal pituitary gland and in pituitary adenoma. AJNR Am J Neuroradiol. 1994;15:101–8.PubMedGoogle Scholar
  84. 84.
    Rai AR, Rai R, Pc V, Vadgaonkar R, Tonse M. A cephalometric analysis on magnitudes and shape of Sella Turcica. J Craniofac Surg. 2016;27:1317–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang H, Hou B, Lu L, Feng M, Zang J, Yao S, Feng F, Wang R, Li F, Zhu Z. PET/MR imaging in the diagnosis of hormone-producing pituitary micro-adenoma: a prospective pilot study. J Nucl Med. 2017;59:523–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Wong AO, Ng S, Lee EK, Leung RC, Ho WK. Somatostatin inhibits (d-Arg6, Pro9-NEt) salmon gonadotropin-releasing hormone- and dopamine D1-stimulated growth hormone release from perifused pituitary cells of Chinese grass carp, Ctenopharyngodon idellus. Gen Comp Endocrinol. 1998;110:29–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Mitrofanova LB, Konovalov PV, Krylova JS, Polyakova VO, Kvetnoy IM. Plurihormonal cells of normal anterior pituitary: facts and conclusions. Oncotarget. 2017;8:29282–99.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Neumann PE, Horoupian DS, Goldman JE, Hess MA. Cytoplasmic filaments of Crooke’s hyaline change belong to the cytokeratin class. An immunocytochemical and ultrastructural study. Am J Pathol. 1984;116:214–22.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Mete O, Asa SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol. 2012;22:443–53.PubMedCrossRefGoogle Scholar
  90. 90.
    Horvath E, Kovacs K. Fine structural cytology of the adenohypophysis in rat and man. J Electron Microsc Tech. 1988;8:401–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Losinski NE, Horvath E, Kovacs K, Asa SL. Immunoelectron microscopic evidence of mammosomatotrophs in human adult and fetal adenohypophyses, rat adenohypophyses and human and rat pituitary adenomas. Anat Anz. 1991;172:11–6.PubMedGoogle Scholar
  92. 92.
    Sjostedt E, Bollerslev J, Mulder J, Lindskog C, Ponten F, Casar-Borota O. A specific antibody to detect transcription factor T-Pit: a reliable marker of corticotroph cell differentiation and a tool to improve the classification of pituitary neuroendocrine tumours. Acta Neuropathol. 2017;134:675–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Lloyd RV, Osamura RY. Transcription factors in normal and neoplastic pituitary tissues. Microsc Res Tech. 1997;39:168–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee M, Marinoni I, Irmler M, Psaras T, Honegger JB, Beschorner R, Anastasov N, Beckers J, Theodoropoulou M, Roncaroli F, Pellegata NS. Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas. Acta Neuropathol. 2013;126:137–50.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    McDonald WC, Banerji N, McDonald KN, Ho B, Macias V, Kajdacsy-Balla A. Steroidogenic factor 1, Pit-1, and adrenocorticotropic hormone: a rational starting place for the immunohistochemical characterization of pituitary adenoma. Arch Pathol Lab Med. 2017;141:104–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Snyder G, Hymer WC, Snyder J. Functional heterogeneity in somatotrophs isolated from the rat anterior pituitary. Endocrinology. 1977;101:788–99.PubMedCrossRefGoogle Scholar
  97. 97.
    Nikitovitch-Winer MB, Atkin J, Maley BE. Colocalization of prolactin and growth hormone within specific adenohypophyseal cells in male, female, and lactating female rats. Endocrinology. 1987;121:625–30.PubMedCrossRefGoogle Scholar
  98. 98.
    Frawley LS, Clark CL, Schoderbek WE, Hoeffler JP, Boockfor FR. A novel bioassay for lactogenic activity: demonstration that prolactin cells differ from one another in bio- and immuno-potencies of secreted hormone. Endocrinology. 1986;119:2867–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Le Tissier P, Campos P, Lafont C, Romano N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol. 2017;13:257–67.PubMedCrossRefGoogle Scholar
  100. 100.
    Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol. 2012;33:252–66.PubMedCrossRefGoogle Scholar
  101. 101.
    Hodson DJ, Molino F, Fontanaud P, Bonnefont X, Mollard P. Investigating and modelling pituitary endocrine network function. J Neuroendocrinol. 2010;22:1217–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Denef C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol. 2008;20:1–70.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nakane PK. Classifications of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem. 1970;18:9–20.PubMedCrossRefGoogle Scholar
  104. 104.
    Denef C, Andries M. Evidence for paracrine interaction between gonadotrophs and lactotrophs in pituitary cell aggregates. Endocrinology. 1983;112:813–22.PubMedCrossRefGoogle Scholar
  105. 105.
    Van Bael A, Vande Vijver V, Devreese B, Van Beeumen J, Denef C. N-terminal 10- and 12-kDa POMC fragments stimulate differentiation of lactotrophs. Peptides. 1996;17:1219–28.PubMedCrossRefGoogle Scholar
  106. 106.
    Fraser RA, Siminoski K, Harvey S. Growth hormone receptor gene: novel expression in pituitary tissue. J Endocrinol. 1991;128:R9–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Devnath S, Inoue K. An insight to pituitary folliculo-stellate cells. J Neuroendocrinol. 2008;20:687–91.PubMedCrossRefGoogle Scholar
  108. 108.
    Vitale ML, Garcia CJ, Akpovi CD, Pelletier RM. Distinctive actions of connexin 46 and connexin 50 in anterior pituitary folliculostellate cells. PLoS One. 2017;12:e0182495.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Arzt E, Pereda MP, Castro CP, Pagotto U, Renner U, Stalla GK. Pathophysiological role of the cytokine network in the anterior pituitary gland. Front Neuroendocrinol. 1999;20:71–95.PubMedCrossRefGoogle Scholar
  110. 110.
    Hentges S, Boyadjieva N, Sarkar DK. Transforming growth factor-beta3 stimulates lactotrope cell growth by increasing basic fibroblast growth factor from folliculo-stellate cells. Endocrinology. 2000;141:859–67.PubMedCrossRefGoogle Scholar
  111. 111.
    Guillou A, Romano N, Bonnefont X, Le Tissier P, Mollard P, Martin AO. Modulation of the tyrosine kinase receptor Ret/glial cell-derived neurotrophic factor (GDNF) signaling: a new player in reproduction induced anterior pituitary plasticity? Endocrinology. 2011;152:515–25.PubMedCrossRefGoogle Scholar
  112. 112.
    Lyles D, Tien JH, McCobb DP, Zeeman ML. Pituitary network connectivity as a mechanism for the luteinising hormone surge. J Neuroendocrinol. 2010;22:1267–78.PubMedCrossRefGoogle Scholar
  113. 113.
    Tsukada T, Azuma M, Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T. Folliculostellate cell interacts with pericyte via TGFbeta2 in rat anterior pituitary. J Endocrinol. 2016;229:159–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Tsukada T, Fujiwara K, Horiguchi K, Azuma M, Ramadhani D, Tofrizal A, Batchuluun K, Maliza R, Syaidah R, Kikuchi M, Yashiro T. Folliculostellate cells are required for laminin release from gonadotrophs in rat anterior pituitary. Acta Histochem Cytochem. 2014;47:239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rizzoti K. Adult pituitary progenitors/stem cells: from in vitro characterization to in vivo function. Eur J Neurosci. 2010;32:2053–62.PubMedCrossRefGoogle Scholar
  116. 116.
    Saland LC. The mammalian pituitary intermediate lobe: an update on innervation and regulation. Brain Res Bull. 2001;54:587–93.PubMedCrossRefGoogle Scholar
  117. 117.
    Fan X, Olson SJ, Johnson MD. Immunohistochemical localization and comparison of carboxypeptidases D, E, and Z, alpha-MSH, ACTH, and MIB-1 between human anterior and corticotroph cell “basophil invasion” of the posterior pituitary. J Histochem Cytochem. 2001;49:783–90.PubMedCrossRefGoogle Scholar
  118. 118.
    Bicknell AB. The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol. 2008;20:692–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Daikoku S, Kawano H, Abe K, Yoshinaga K. Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch Histol Jpn. 1981;44:103–16.PubMedCrossRefGoogle Scholar
  120. 120.
    Szabo K, Csanyi K. The vascular architecture of the developing pituitary-median eminence complex in the rat. Cell Tissue Res. 1982;224:563–77.PubMedCrossRefGoogle Scholar
  121. 121.
    Lamacz M, Tonon MC, Louiset E, Cazin L, Vaudry H. The intermediate lobe of the pituitary, model of neuroendocrine communication. Arch Int Physiol Biochim Biophys. 1991;99:205–19.PubMedGoogle Scholar
  122. 122.
    Goudreau JL, Lindley SE, Lookingland KJ, Moore KE. Evidence that hypothalamic periventricular dopamine neurons innervate the intermediate lobe of the rat pituitary. Neuroendocrinology. 1992;56:100–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Makarenko IG, Ugrumov MV, Calas A. Axonal projections from the hypothalamus to the pituitary intermediate lobe in rats during ontogenesis: DiI tracing study. Brain Res Dev Brain Res. 2005;155:117–26.PubMedCrossRefGoogle Scholar
  124. 124.
    Palkovits M, Mezey E, Chiueh CG, Krieger DT, Gallatz K, Brownstein MJ. Serotonin-containing elements of the rat pituitary intermediate lobe. Neuroendocrinology. 1986;42:522–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castano JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol. 2009;164:40–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Pivonello R, Waaijers M, Kros JM, Pivonello C, de Angelis C, Cozzolino A, Colao A, Lamberts SWJ, Hofland LJ. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland. Endocrine. 2017;57:314–25.PubMedCrossRefGoogle Scholar
  127. 127.
    Hopker VH, Kjaer B, Varon S. Dopaminergic regulation of BDNF content in the pituitary intermediate lobe. Neuroreport. 1997;8:1089–93.PubMedCrossRefGoogle Scholar
  128. 128.
    Nakakura T, Suzuki M, Watanabe Y, Tanaka S. Possible involvement of brain-derived neurotrophic factor (BDNF) in the innervation of dopaminergic neurons from the rat periventricular nucleus to the pars intermedia. Zool Sci. 2007;24:1086–93.PubMedCrossRefGoogle Scholar
  129. 129.
    Hadley ME, Davis MD, Morgan CM. Cellular control of melanocyte stimulating hormone secretion. Front Horm Res. 1977;4:94–104.PubMedCrossRefGoogle Scholar
  130. 130.
    Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One. 2009;4:e4815.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology. 2015;101:175–92.PubMedCrossRefGoogle Scholar
  132. 132.
    Rizzoti K, Akiyama H, Lovell-Badge R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell. 2013;13:419–32.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Wood S, Loudon A. The pars tuberalis: the site of the circannual clock in mammals? Gen Comp Endocrinol. 2017;27:95–112.Google Scholar
  134. 134.
    Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol. 2017;258:236–43.PubMedCrossRefGoogle Scholar
  135. 135.
    Azzali G, Arcari ML, Cacchioli A, Toni R. Fine structure and photoperiodical seasonal changes in Pars tuberalis of hibernating bats. Ital J Anat Embryol. 2003;108:49–64.PubMedGoogle Scholar
  136. 136.
    Yasuo S, Unfried C, Kettner M, Geisslinger G, Korf HW. Localization of an endocannabinoid system in the hypophysial pars tuberalis and pars distalis of man. Cell Tissue Res. 2010;342:273–81.PubMedCrossRefGoogle Scholar
  137. 137.
    Bockmann J, Bockers TM, Winter C, Wittkowski W, Winterhoff H, Deufel T, Kreutz MR. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3,5,3′-triiodothyronine, thyrotropin-releasing hormone, and pit-1 independent. Endocrinology. 1997;138:1019–28.PubMedCrossRefGoogle Scholar
  138. 138.
    Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G. Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res. 2015;58:397–417.PubMedCrossRefGoogle Scholar
  139. 139.
    Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pevet P, Masson-Pevet M. The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem. 2002;50:1647–57.PubMedCrossRefGoogle Scholar
  140. 140.
    Hanon EA, Routledge K, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol. 2010;22:51–5.PubMedCrossRefGoogle Scholar
  141. 141.
    Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T. T(3) implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res. 2006;324:175–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Dupre SM. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology. 2011;94:101–12.PubMedCrossRefGoogle Scholar
  143. 143.
    Sanchez E, Singru PS, Wittmann G, Nouriel SS, Barrett P, Fekete C, Lechan RM. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151:3827–35.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Cota D. The role of the endocannabinoid system in the regulation of hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinol. 2008;20(Suppl 1):35–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Jafarpour A, Dehghani F, Korf HW. Identification of an endocannabinoid system in the rat pars tuberalis-a possible interface in the hypothalamic-pituitary-adrenal system? Cell Tissue Res. 2017;368:115–23.PubMedCrossRefGoogle Scholar
  146. 146.
    Brown CH. Magnocellular neurons and posterior pituitary function. Compr Physiol. 2016;6:1701–41.PubMedCrossRefGoogle Scholar
  147. 147.
    Garten LL, Sofroniew MV, Dyball RE. A direct catecholaminergic projection from the brainstem to the neurohypophysis of the rat. Neuroscience. 1989;33:149–55.PubMedCrossRefGoogle Scholar
  148. 148.
    Shuster SJ, Riedl M, Li X, Vulchanova L, Elde R. The kappa opioid receptor and dynorphin co-localize in vasopressin magnocellular neurosecretory neurons in guinea-pig hypothalamus. Neuroscience. 2000;96:373–83.PubMedCrossRefGoogle Scholar
  149. 149.
    Peters LL, Hoefer MT, Ben-Jonathan N. The posterior pituitary: regulation of anterior pituitary prolactin secretion. Science. 1981;213:659–61.PubMedCrossRefGoogle Scholar
  150. 150.
    Gross PM, Joneja MG, Pang JJ, Polischuk TM, Shaver SW, Wainman DS. Topography of short portal vessels in the rat pituitary gland: a scanning electron-microscopic and morphometric study of corrosion cast replicas. Cell Tissue Res. 1993;272:79–88.PubMedCrossRefGoogle Scholar
  151. 151.
    Wei XY, Zhao CH, Liu YY, Wang YZ, Ju G. Immuohistochemical markers for pituicyte. Neurosci Lett. 2009;465:27–30.PubMedCrossRefGoogle Scholar
  152. 152.
    Hatton GI. Pituicytes, glia and control of terminal secretion. J Exp Biol. 1988;139:67–79.PubMedGoogle Scholar
  153. 153.
    Kawasaki M, Saito J, Hashimoto H, Suzuki H, Otsubo H, Fujihara H, Ohnishi H, Nakamura T, Ueta Y. Induction of the galanin-like peptide gene expression in the posterior pituitary gland after acute osmotic stimulus in rats. Neurosci Lett. 2007;419:125–30.PubMedCrossRefGoogle Scholar
  154. 154.
    Onaka T, Kuramochi M, Saito J, Ueta Y, Yada T. Galanin-like peptide stimulates vasopressin, oxytocin and adrenocorticotropic hormone release in rats. Neuroreport. 2005;16:243–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Hussy N. Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. Prog Brain Res. 2002;139:95–112.PubMedCrossRefGoogle Scholar
  156. 156.
    Rosso L, Mienville JM. Pituicyte modulation of neurohormone output. Glia. 2009;57:235–43.PubMedCrossRefGoogle Scholar
  157. 157.
    O’Malley CD, de CM Saunders JB. Leonardo on the human body. New York: Dover Publications; 1983.Google Scholar
  158. 158.
    Meshberger FL. An interpretation of Michelangelo’s creation of Adam based on neuroanatomy. JAMA. 1990;264:1837–41.PubMedCrossRefGoogle Scholar
  159. 159.
    Di Iorgi N, Morana G, Allegri AE, Napoli F, Gastaldi R, Calcagno A, Patti G, Loche S, Maghnie M. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract Res Clin Endocrinol Metab. 2016;30:705–36.PubMedCrossRefGoogle Scholar
  160. 160.
    Giordano M. Genetic causes of isolated and combined pituitary hormone deficiency. Best Pract Res Clin Endocrinol Metab. 2016;30:679–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ronald M. Lechan
    • 1
    Email author
  • Knarik Arkun
    • 2
  • Roberto Toni
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of Medicine, Division of EndocrinologyDiabetes and Metabolism, Tufts Medical Center and Tufts University School of MedicineBostonUSA
  2. 2.Department of Anatomic and Clinical PathologyTufts Medical Center and Tufts University School of MedicineBostonUSA
  3. 3.Department of Medicine and Surgery, Unit of Biomedical, Biotechnological, and Translational Sciences, Section of Human AnatomyRE.MO.BIO.S. LabParmaItaly
  4. 4.Center for Sport and Exercise Medicine (SEM), University of Parma School of Medicine, c/o Maggiore HospitalParmaItaly
  5. 5.Museum of Biomedicine and Historical Laboratory (BIOMED), University of Parma Museum Network SystemParmaItaly
  6. 6.Department of Medicine, Division of Endocrinology, Diabetes, and MetabolismTufts Medical Center and Tufts University School of MedicineBostonUSA

Personalised recommendations