Skip to main content

Pathophysiology of Type 2 Diabetes

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

While in the earlier times type 2 diabetes (T2D) was only considered as a disease related to a disturbance in the functioning of the pancreas, lots of evidences accumulated during the past few decades revealed a plethora of additional factors that contribute to this devastating disease. The understanding of T2D has evolved from recognizing the duo of pancreatic β-cell failure with defective insulin secretion and insulin resistance (IR), to the triumvirate with the addition of hepatic gluconeogenesis. Recently, the ominous octet (addition of deranged adipocyte metabolism, incretin defect, increased glucagon secretion, increased renal glucose reabsorption, and neurotransmitter dysfunction and central appetite dysregulation) and of later the dirty dozen (addition of dopamine, vitamin D, testosterone and renin-angiotensin system) elaborated on the prior simplistic disease models. Furthermore, with the addition of the gut, the unlucky thirteen, suggests that the contributing factors toward T2D pathogenesis are still in the process of being identified [1–9]. In this chapter, we will explore the various factors that have been identified or are being proposed as the underlying contributors to the pathogenesis and pathophysiology of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeFronzo RA. The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 1988;37(6):667–87.

    Article  CAS  PubMed  Google Scholar 

  2. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 1997;5:177–269.

    Google Scholar 

  3. DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel agents for the treatment of type 2 diabetes. Diabetes Spectr. 2014;27(2):100–12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalra S. Recent advances in pathophysiology of diabetes: beyond the dirty dozen. J Pak Med Assoc. 2013;63(2):277–80.

    PubMed  Google Scholar 

  6. Kalra S, Chawla R, Madhu S. The dirty dozen of diabetes. Indian J Endocrinol Metab. 2013;17(3):367.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Somasundaram NP, Wijesinghe AM. Therapy for type 2 diabetes mellitus: targeting the ‘Unlucky Thirteen’. Jacobs J Diabetes Endocrinol. 2016;2(1):12.

    Google Scholar 

  8. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83.

    Article  CAS  PubMed  Google Scholar 

  9. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169–81.

    Article  PubMed  Google Scholar 

  10. Tripathy D, Thripathy BB, Chandalia HB. Pathogenesis of type 2 diabetes. In: Chandalia HB, editor. RSSDI textbook of diabetes mellitus. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Limited; 2014.

    Google Scholar 

  11. Chawla R. Type 2 diabetes: etiology and pathogenesis. In: Chawla R, editor. Manual of diabetes care. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Limited; 2014.

    Chapter  Google Scholar 

  12. Groop L, Lyssenko V. Genes and type 2 diabetes mellitus. Curr Diab Rep. 2008;8(3):192.

    Article  CAS  PubMed  Google Scholar 

  13. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrannini E, Simonson DC, Katz LD, Reichard G Jr, Bevilacqua S, Barrett EJ, et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism. 1988;37(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  15. James W. The fundamental drivers of the obesity epidemic. Obes Rev. 2008;9(s1):6–13.

    Article  PubMed  Google Scholar 

  16. Defronzo RA, Soman V, Sherwin RS, Hendler R, Felig P. Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. J Clin Invest. 1978;62(1):204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diamond MP, Thornton K, Connolly-Diamond M, Sherwin RS, DeFronzo RA. Reciprocal variations in insulin-stimulated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance. J Soc Gynecol Investig. 1995;2(5):708–15.

    Article  CAS  PubMed  Google Scholar 

  18. DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S127–S38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Fronzo RA, Ferrannini E, Keen H, Zimmet P. International textbook of diabetes mellitus. Chichester, West Sussex UK; Wiley, 2004.

    Google Scholar 

  20. Reaven G, Hollenbeck C, Chen Y-D. Relationship between glucose tolerance, insulin secretion, and insulin action in non-obese individuals with varying degrees of glucose tolerance. Diabetologia. 1989;32(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  21. Saad M, Pettitt D, Mott D, Knowler W, Nelson R, Bennett P. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet. 1989;333(8651):1356–9.

    Article  Google Scholar 

  22. Weyer C, Tataranni PA, Bogardus C, Pratley RE. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care. 2001;24(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrannini E, Natali A, Muscelli E, Nilsson P, Golay A, Laakso M, et al. Natural history and physiological determinants of changes in glucose tolerance in a non-diabetic population: the RISC Study. Diabetologia. 2011;54(6):1507–16.

    Article  CAS  PubMed  Google Scholar 

  24. Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, et al. Evidence of β-cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1044–54.

    Article  CAS  PubMed  Google Scholar 

  25. De Tata V. Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol. 2014;5:138.

    Google Scholar 

  26. Vauhkonen I, Niskanen L, Vanninen E, Kainulainen S, Uusitupa M, Laakso M. Defects in insulin secretion and insulin action in non-insulin-dependent diabetes mellitus are inherited. Metabolic studies on offspring of diabetic probands. J Clin Invest. 1998;101(1):86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeFronzo RA, Ferrannini E, Alberti KGMM, Zimmet P, Alberti G. International textbook of diabetes mellitus, 2 Volume Set. New York: Wiley; 2015.

    Book  Google Scholar 

  29. Montane J, Klimek-Abercrombie A, Potter K, Westwell-Roper C, Bruce VC. Metabolic stress, IAPP and islet amyloid. Diabetes Obes Metab. 2012;14(s3):68–77.

    Article  CAS  PubMed  Google Scholar 

  30. Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011;91(3):795–826.

    Article  CAS  PubMed  Google Scholar 

  31. Matthaei S, Stumvoll M, Kellerer M, Häring H-U. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev. 2000;21(6):585–618.

    CAS  PubMed  Google Scholar 

  32. Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 1989;84(1):205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeFronzo R, Davidson J, Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012;14(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  34. Müller C, Assimacopoulos-Jeannet F, Mosimann F, Schneiter P, Riou J, Pachiaudi C, et al. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese non-diabetic patients. Diabetologia. 1997;40(4):463–8.

    Article  PubMed  Google Scholar 

  35. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pendergrass M, Bertoldo A, Bonadonna R, Nucci G, Mandarino L, Cobelli C, et al. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am J Physiol Endocrinol Metab. 2007;292(1):E92–E100.

    Article  CAS  PubMed  Google Scholar 

  37. Tripathy D, Eriksson K-F, Orho-Melander M, Fredriksson J, Ahlqvist G, Groop L. Parallel manifestation of insulin resistance and beta cell decompensation is compatible with a common defect in Type 2 diabetes. Diabetologia. 2004;47(5):782–93.

    Article  CAS  PubMed  Google Scholar 

  38. Reaven G. The fourth musketeer—from Alexandre Dumas to Claude Bernard. Diabetologia. 1995;38(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  39. Bays HE, González-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68.

    Article  CAS  PubMed  Google Scholar 

  40. Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes. 1997;46(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152(4):673–84.

    Article  CAS  PubMed  Google Scholar 

  42. Rebrin K, Steil GM, Getty L, Bergman RN. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes. 1995;44(9):1038–45.

    Article  CAS  PubMed  Google Scholar 

  43. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kwon H, Kim D, Kim JS. Body fat distribution and the risk of incident metabolic syndrome: a longitudinal cohort study. Sci Rep. 2017;7(1):10955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Matsuda M, DeFronzo RA, Glass L, Consoli A, Giordano M, Bressler P, et al. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism. 2002;51(9):1111–9.

    Article  CAS  PubMed  Google Scholar 

  46. Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest. 1970;49(4):837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reaven G, Chen Y-D, Golay A, Swislocki A, Jaspan J. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metabol. 1987;64(1):106–10.

    Article  CAS  Google Scholar 

  48. Henquin J-C, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia. 2011;54(7):1720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Müller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes: response to carbohydrate and protein ingestion. N Engl J Med. 1970;283(3):109–15.

    Article  PubMed  Google Scholar 

  50. Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes. 1987;36(3):274–83.

    Article  CAS  PubMed  Google Scholar 

  51. Müller WA, Faloona GR, Unger RH. Hyperglucagonemia in diabetic ketoacidosis: its prevalence and significance. Am J Med. 1973;54(1):52–7.

    Article  PubMed  Google Scholar 

  52. Dobbs R, Sakurai H, Sasaki H, Faloona G, Valverde I, Baetens D, et al. Glucagon: role in the hyperglycemia of diabetes mellitus. Science. 1975;187(4176):544–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gerich JE, Lorenzi M, Bier DM, Schneider V, Tsalikian E, Karam JH, et al. Prevention of human diabetic ketoacidosis by somatostatin: evidence for an essential role of glucagon. N Engl J Med. 1975;292(19):985–9.

    Article  CAS  PubMed  Google Scholar 

  54. Stevenson RW, Steiner KE, Davis M, Hendrick G, Williams P, Lacy WW, et al. Similar dose responsiveness of hepatic glycogenolysis and gluconeogenesis to glucagon in vivo. Diabetes. 1987;36(3):382–9.

    Article  CAS  PubMed  Google Scholar 

  55. Lee Y, Wang M-Y, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 2011;60(2):391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–36.

    Article  CAS  PubMed  Google Scholar 

  57. Mu J, Qureshi SA, Brady EJ, Muise ES, Candelore MR, Jiang G, et al. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist. PLoS One. 2012;7(11):e49572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs. 2017;26(12):1373–89.

    Article  CAS  PubMed  Google Scholar 

  59. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153–65.

    Article  CAS  PubMed  Google Scholar 

  60. Meier JJ, Nauck MA. Incretins and the development of type 2 diabetes. Curr Diab Rep. 2006;6(3):194–201.

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010;57(5):359–72.

    Article  CAS  PubMed  Google Scholar 

  62. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  63. Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care. 1996;19(5):468–71.

    Article  CAS  PubMed  Google Scholar 

  64. Nauck M, Vardarli I, Deacon C, Holst JJ, Meier J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. 2011;54(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  65. Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired β-cell function? Diabetes. 2010;59(5):1117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  67. Quddusi S, Vahl TP, Hanson K, Prigeon RL, D’Alessio DA. Differential effects of acute and extended infusions of glucagon-like peptide-1 on first-and second-phase insulin secretion in diabetic and nondiabetic humans. Diabetes Care. 2003;26(3):791–8.

    Article  CAS  PubMed  Google Scholar 

  68. Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016;18(3):203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdul-Ghani M, DeFronzo R. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract. 2008;14(6):782–90.

    Article  PubMed  Google Scholar 

  70. Noonan W, Shapiro V, Banks R. Renal glucose reabsorption during hypertonic glucose infusion in female streptozotocin-induced diabetic rats. Life Sci. 2001;68(26):2967–77.

    Article  CAS  PubMed  Google Scholar 

  71. Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Physiol-Renal Physiol. 1994;266(2):F283–F90.

    Article  CAS  Google Scholar 

  72. Mogensen C. Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest. 1971;28(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  73. Farber SJ, Berger EY, Earle DP. Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose. J Clin Invest. 1951;30(2):125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care. 2002;25(7):1177–84.

    Article  PubMed  Google Scholar 

  75. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium–glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.

    Article  CAS  PubMed  Google Scholar 

  76. Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets. 2016;20(9):1109–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cariou B, Charbonnel B. Sotagliflozin as a potential treatment for type 2 diabetes mellitus. Expert Opin Investig Drugs. 2015;24(12):1647–56.

    Article  CAS  PubMed  Google Scholar 

  78. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.

    Article  CAS  PubMed  Google Scholar 

  79. Miller RE. Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the islets of Langerhans. Endocr Rev. 1981;2(4):471–94.

    Article  CAS  PubMed  Google Scholar 

  80. Berthoud H-R, Jeanrenaud B. Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology. 1979;105(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  81. Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48(9):1801–6.

    Article  CAS  PubMed  Google Scholar 

  83. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci. 2002;5(6):566.

    Article  CAS  PubMed  Google Scholar 

  84. Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central melanocortin receptors regulate insulin action. J Clin Invest. 2001;108(7):1079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  86. DeFronzo RA. Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Young A, Gedulin B, Vine W, Percy A, Rink T. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia. 1995;38(6):642–8.

    Article  CAS  PubMed  Google Scholar 

  88. Ryan G, Briscoe TA, Jobe L. Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des Devel Ther. 2008;2:203.

    Article  CAS  Google Scholar 

  89. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hanlon EC, Van Cauter E. Quantification of sleep behavior and of its impact on the cross-talk between the brain and peripheral metabolism. Proc Natl Acad Sci U S A. 2011;108(Supplement 3):15609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kalra S, Kalra B, Agrawal N, Kumar S. Dopamine: the forgotten felon in type 2 diabetes. Recent Pat Endocr Metab Immune Drug Discov. 2011;5(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  92. Luo S, Luo J, Meier AH, Cincotta AH. Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997;8(16):3495–9.

    Article  CAS  PubMed  Google Scholar 

  93. Cincotta AH. 16. Hypothalamic Role in the insulin resistance syndrome. Insulin resistance and insulin resistance syndrome. 2002;5:271.

    Google Scholar 

  94. Luo S, Meier AH, Cincotta AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998;68(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  95. Scislowski P, Tozzo E, Zhang Y, Phaneuf S, Prevelige R, Cincotta A. Biochemical mechanisms responsible for the attenuation of diabetic and obese conditions in ob/ob mice treated with dopaminergic agonists. Int J Obes (Lond). 1999;23(4):425.

    Article  CAS  Google Scholar 

  96. Luo S, Liang Y, Cincotta A. Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology. 1999;69(3):160–6.

    Article  CAS  PubMed  Google Scholar 

  97. Pijl H, Ohashi S, Matsuda M, Miyazaki Y, Mahankali A, Kumar V, et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care. 2000;23(8):1154–61.

    Article  CAS  PubMed  Google Scholar 

  98. Harinarayan CV. Vitamin D and diabetes mellitus. Hormones (Athens). 2014;13(2):163–81.

    Article  Google Scholar 

  99. Mathieu C. Vitamin D and diabetes: where do we stand? Diabetes Res Clin Pract. 2015;108(2):201–9.

    Article  CAS  PubMed  Google Scholar 

  100. Rabinovitch A, Suarez-Pinzon WL, Sooy K, Strynadka K, Christakos S. Expression of calbindin-D28k in a pancreatic Isletβ-Cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology. 2001;142(8):3649–55.

    Article  CAS  PubMed  Google Scholar 

  101. Hyppönen E, Läärä E, Reunanen A, Järvelin M-R, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001;358(9292):1500–3.

    Article  PubMed  Google Scholar 

  102. Teegarden D, Donkin SS. Vitamin D: emerging new roles in insulin sensitivity. Nutr Res Rev. 2009;22(1):82–92.

    Article  CAS  PubMed  Google Scholar 

  103. Herrmann M, Sullivan DR, Veillard A-S, McCorquodale T, Straub IR, Scott R, et al. Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes Care. 2015;38(3):521–8.

    Article  CAS  PubMed  Google Scholar 

  104. Pacifico L, Anania C, Osborn JF, Ferraro F, Bonci E, Olivero E, et al. Low 25 (OH) D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur J Endocrinol. 2011;165(4):603–11.

    Article  CAS  PubMed  Google Scholar 

  105. Talaei A, Mohamadi M, Adgi Z. The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 2011;94(2):486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 2013;15(1):59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goossens GH. The renin-angiotensin system in the pathophysiology of type 2 diabetes. Obes Facts. 2012;5(4):611–24.

    Article  CAS  PubMed  Google Scholar 

  109. Grassi G, Seravalle G, Dell’Oro R, Trevano FQ, Bombelli M, Scopelliti F, et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens. 2003;21(9):1761–9.

    Article  CAS  PubMed  Google Scholar 

  110. Jin H-M, Pan Y. Angiotensin type-1 receptor blockade with losartan increases insulin sensitivity and improves glucose homeostasis in subjects with type 2 diabetes and nephropathy. Nephrol Dial Transplant. 2007;22(7):1943–9.

    Article  CAS  PubMed  Google Scholar 

  111. Santoro D, Natali A, Palombo C, Brandi LS, Piatti M, Ghione S, et al. Effects of chronic angiotensin converting enzyme inhibition on glucose tolerance and insulin sensitivity in essential hypertension. Hypertension. 1992;20(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  112. Investigators HOPES. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355(9200):253–9.

    Article  Google Scholar 

  113. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  114. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  115. Müller M, Fasching P, Schmid R, Burgdorff T, Waldhäusl W, Eichler H. Inhibition of paracrine angiotensin-converting enzyme in vivo: effects on interstitial glucose and lactate concentrations in human skeletal muscle. Eur J Clin Invest. 1997;27(10):825–30.

    Article  PubMed  Google Scholar 

  116. Frossard M, Joukhadar C, Steffen G, Schmid R, Eichler H, Müller M. Paracrine effects of angiotensin-converting-enzyme-and angiotensin-II-receptor-inhibition on transcapillary glucose transport in humans. Life Sci. 2000;66(10):PL147–PL54.

    Article  CAS  PubMed  Google Scholar 

  117. Lupi R, Del Guerra S, Bugliani M, Boggi U, Mosca F, Torri S, et al. The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol. 2006;154(2):355–61.

    Article  CAS  PubMed  Google Scholar 

  118. Furuhashi M, Ura N, Takizawa H, Yoshida D, Moniwa N, Murakami H, et al. Blockade of the renin–angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens. 2004;22(10):1977–82.

    Article  CAS  PubMed  Google Scholar 

  119. Gillespie EL, White CM, Kardas M, Lindberg M, Coleman CI. The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care. 2005;28(9):2261–6.

    Article  CAS  PubMed  Google Scholar 

  120. Investigators DT. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551–62.

    Article  Google Scholar 

  121. Group NS. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.

    Article  Google Scholar 

  122. Hansson L, Lindholm LH, Ekbom T, Dahlöf B, Lanke J, Scherstén B, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet. 1999;354(9192):1751–6.

    Article  CAS  PubMed  Google Scholar 

  123. Lindholm LH, Ibsen H, Borch-Johnsen K, Olsen MH, Wachtell K, Dahlöf B, et al. Risk of new-onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study. J Hypertens. 2002;20(9):1879–86.

    Article  CAS  PubMed  Google Scholar 

  124. Daubresse J, Meunier J, Wilmotte J, Luyckx A, Lefebvre P. Pituitary-testicular axis in diabetic men with and without sexual impotence. Diabete Metab. 1978;4(4):233–7.

    CAS  PubMed  Google Scholar 

  125. Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30(4):911–7.

    Article  CAS  PubMed  Google Scholar 

  126. Corona G, Monami M, Rastrelli G, Aversa A, Sforza A, Lenzi A, et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl. 2011;34(6pt1):528–40.

    Article  CAS  PubMed  Google Scholar 

  127. Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metabol. 1994;79(4):997–1000.

    CAS  Google Scholar 

  128. Grossmann M, Gianatti EJ, Zajac JD. Testosterone and type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(3):247–56.

    Article  CAS  PubMed  Google Scholar 

  129. Zitzmann M. Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol. 2009;5(12):673.

    Article  CAS  PubMed  Google Scholar 

  130. Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson K-F, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28(7):1636–42.

    Article  CAS  PubMed  Google Scholar 

  131. Völzke H, Aumann N, Krebs A, Nauck M, Steveling A, Lerch MM, et al. Hepatic steatosis is associated with low serum testosterone and high serum DHEAS levels in men. Int J Androl. 2010;33(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  132. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu X, Pergola GD, Bjorntorp P. Testosterone increases lipolysis and the number of β-adrenoceptors in male rat adipocytes. Endocrinology. 1991;128(1):379–82.

    Article  CAS  PubMed  Google Scholar 

  134. Mårin P, Oden B, Björntorp P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metabol. 1995;80(1):239–43.

    Google Scholar 

  135. Stellato RK, Feldman HA, Hamdy O, Horton ES, Mckinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care. 2000;23(4):490–4.

    Article  CAS  PubMed  Google Scholar 

  136. Selvin E, Feinleib M, Zhang L, Rohrmann S, Rifai N, Nelson WG, et al. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care. 2007;30(2):234–8.

    Article  CAS  PubMed  Google Scholar 

  137. Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, et al. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care. 2011;34(7):1669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, et al. Sex hormone–binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009;361(12):1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Smith MR, Finkelstein JS, McGovern FJ, Zietman AL, Fallon MA, Schoenfeld DA, et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metabol. 2002;87(2):599–603.

    Article  CAS  Google Scholar 

  140. Hamilton E, Gianatti E, Strauss B, Wentworth J, Lim-Joon D, Bolton D, et al. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol (Oxf). 2011;74(3):377–83.

    Article  CAS  Google Scholar 

  141. Keating NL, O’malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24(27):4448–56.

    Article  CAS  PubMed  Google Scholar 

  142. Boyanov M, Boneva Z, Christov V. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male. 2003;6(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  143. Kapoor D, Goodwin E, Channer K, Jones T. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2006;154(6):899–906.

    Article  CAS  PubMed  Google Scholar 

  144. Heufelder AE, Saad F, Bunck MC, Gooren L. Fifty-two—week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl. 2009;30(6):726–33.

    Article  CAS  PubMed  Google Scholar 

  145. Oh J-Y, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care. 2002;25(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  146. Fukui M, Kitagawa Y, Nakamura N, Yoshikawa T. Association between elevated testosterone and development of microalbuminuria during puberty in female subjects with type 1 diabetes. Response to Amin et al. 2003;26(10):2966–7.

    Google Scholar 

  147. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.

    Article  CAS  PubMed  Google Scholar 

  148. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metabol. 2005;90(4):1929–35.

    Article  CAS  Google Scholar 

  149. Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.

    Article  PubMed  CAS  Google Scholar 

  150. Prawitt J, Caron S, Staels B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep. 2011;11(3):160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26(4):312–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279(22):23158–65.

    Article  CAS  PubMed  Google Scholar 

  153. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis. 2011;29(1):37–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Meyer-Gerspach A, Steinert R, Keller S, Malarski A, Schulte F, Beglinger C. Effects of chenodeoxycholic acid on the secretion of gut peptides and fibroblast growth factors in healthy humans. J Clin Endocrinol Metabol. 2013;98(8):3351–8.

    Article  CAS  Google Scholar 

  155. Sonne DP, Hansen M, Knop FK. Mechanisms in endocrinology: bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol. 2014;171(2):R47–65.

    Article  CAS  PubMed  Google Scholar 

  156. Staels B. A review of bile acid sequestrants: potential mechanism (s) for glucose-lowering effects in type 2 diabetes mellitus. Postgrad Med. 2009;121(Suppl 1):25–30.

    Article  PubMed  Google Scholar 

  157. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig. 2018;9(1):5–12.

    Article  PubMed  Google Scholar 

  158. Sohail MU, Althani A, Anwar H, Rizzi R, Marei HE. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res. 2017;2017

    Google Scholar 

  159. Fukui H. The gut impacts diabetic management tomorrow: the recent messages from intestine and microbiota. J Clin Nutr Diet. 2016;2(4):20.

    Article  Google Scholar 

  160. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60(4):824–31.

    Article  CAS  PubMed  Google Scholar 

  163. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost F, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.

    Article  CAS  PubMed  Google Scholar 

  164. Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.

    Article  CAS  PubMed  Google Scholar 

  166. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6. e7.

    Article  PubMed  CAS  Google Scholar 

  167. Anderson GJ. Mechanisms of iron loading and toxicity. Am J Hematol. 2007;82(S12):1128–31.

    Article  CAS  PubMed  Google Scholar 

  168. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17(3):329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Buysschaert M, Paris I, Selvais P, Hermans M. Clinical aspects of diabetes secondary to idiopathic haemochromatosis in French-speaking Belgium. Diabetes Metab. 1997;23(4):308–13.

    CAS  PubMed  Google Scholar 

  170. Merkel PA, Simonson DC, Amiel SA, Plewe G, Sherwin RS, Pearson HA, et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N Engl J Med. 1988;318(13):809–14.

    Article  CAS  PubMed  Google Scholar 

  171. Hramiak IM, Finegood DT, Adams PC. Factors affecting glucose tolerance in hereditary hemochromatosis. Clin Invest Med. 1997;20(2):110.

    CAS  PubMed  Google Scholar 

  172. Mendler M-H, Turlin B, Moirand R, Jouanolle A-M, Sapey T, Guyader D, et al. Insulin resistance–associated hepatic iron overload. Gastroenterology. 1999;117(5):1155–63.

    Article  CAS  PubMed  Google Scholar 

  173. McClain D, Abraham D, Rogers J, Brady R, Gault P, Ajioka R, et al. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia. 2006;49(7):1661–9.

    Article  CAS  PubMed  Google Scholar 

  174. Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta. 2009;1790(7):671–81.

    Article  CAS  PubMed  Google Scholar 

  175. Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. 2012;10(1):119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Weatherall D. Pathophysiology of thalassaemia. Ballière’s Clin Haematol. 1998;11(1):127–46.

    Article  CAS  Google Scholar 

  177. Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–93.

    PubMed  Google Scholar 

  178. Vogiatzi MG, Macklin EA, Trachtenberg FL, Fung EB, Cheung AM, Vichinsky E, et al. Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br J Haematol. 2009;146(5):546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hoffmeister PA, Storer BE, Sanders JE. Diabetes mellitus in long-term survivors of pediatric hematopoietic cell transplantation. J Pediatr Hematol Oncol. 2004;26(2):81–90.

    Article  PubMed  Google Scholar 

  180. Baker KS, Ness KK, Steinberger J, Carter A, Francisco L, Burns LJ, et al. Diabetes, hypertension, and cardiovascular events in survivors of hematopoietic cell transplantation: a report from the bone marrow transplantation survivor study. Blood. 2007;109(4):1765–72.

    Article  CAS  PubMed  Google Scholar 

  181. Radisky DC, Babcock MC, Kaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux evidence for a mitochondrial iron cycle. J Biol Chem. 1999;274(8):4497–9.

    Article  CAS  PubMed  Google Scholar 

  182. Jehn M, Clark JM, Guallar E. Serum ferritin and risk of the metabolic syndrome in US adults. Diabetes Care. 2004;27(10):2422–8.

    Article  PubMed  Google Scholar 

  183. Iwasaki T, Nakajima A, Yoneda M, Yamada Y, Mukasa K, Fujita K, et al. Serum ferritin is associated with visceral fat area and subcutaneous fat area. Diabetes Care. 2005;28(10):2486–91.

    Article  CAS  PubMed  Google Scholar 

  184. Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among US adults. Diabetes Care. 1999;22(12):1978–83.

    Article  CAS  PubMed  Google Scholar 

  185. Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–33.

    Article  CAS  PubMed  Google Scholar 

  186. White DL, Collinson A. Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts. Adv Nutr. 2013;4(4):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bowers K, Yeung E, Williams MA, Qi L, Tobias DK, Hu FB, et al. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care. 2011;34(7):1557–63.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Shaaban MA, Dawod AEA, Nasr MA. Role of iron in diabetes mellitus and its complications. Menoufia Med J. 2016;29(1):11.

    Article  Google Scholar 

  189. Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51(8):2348–54.

    Article  PubMed  Google Scholar 

  190. Lekakis J, Papamichael C, Stamatelopoulos K, Cimponeriu A, Voutsas A, Vemmos K, et al. Hemochromatosis associated with endothelial dysfunction: evidence for the role of iron stores in early atherogenesis. Vasc Med. 1999;4(3):147–8.

    Article  CAS  PubMed  Google Scholar 

  191. Shah SV, Fonseca VA. Iron and diabetes revisited. Am Diabetes Assoc; 2011.

    Google Scholar 

  192. Facchini FS. Effect of phlebotomy on plasma glucose and insulin concentrations. Diabetes Care. 1998;21(12):2190.

    Article  CAS  PubMed  Google Scholar 

  193. Adams P, Reboussin D, Barton J, McLaren C, Eckfeldt J, McLaren G, et al.; Hemochromatosis and Iron Overload Screening (HEIRS) Study Research Investigators. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352:1769–78.

    Google Scholar 

  194. Ascherio A, Rimm EB, Giovannucci E, Willett WC, Stampfer MJ. Blood donations and risk of coronary heart disease in men. Circulation. 2001;103(1):52–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kesavadev, J. et al. (2019). Pathophysiology of Type 2 Diabetes. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-030-11815-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11815-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11814-3

  • Online ISBN: 978-3-030-11815-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics