Skip to main content

Minimal Disseminated and Minimal Residual Disease in Pediatric Non-Hodgkin Lymphoma

  • Chapter
  • First Online:
Non-Hodgkin's Lymphoma in Childhood and Adolescence

Abstract

Disease-specific as well as patient-specific markers can be used for the detection of minimal disease in childhood Non-Hodgkin lymphomas. PCR-based and flow cytometric techniques have been developed for the different subtypes. The available data using a flow cytometric assay detecting aberrant phenotypes or a PCR-based method for TCR or Ig rearrangements do not allow defining a prognostic role of minimal disseminated disease (MDD) for lymphoblastic lymphoma yet. In Burkitt lymphoma and leukemia, PCR techniques on the DNA level using Myc-IgH fusion sequences or Ig rearrangements indicate a possible prognostic value of MDD in Burkitt lymphoma and early minimal residual disease (MRD) in Burkitt leukemia. MDD and MRD measured by PCR for ALK fusion transcripts are established independent prognostic parameters for patients with ALK-positive anaplastic large cell lymphoma. Validation of MDD and MRD as prognostic factors is still necessary for all subtypes but ALCL. Next-generation sequencing-based methods may provide new options for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A, Barth A, Borkhardt A, Peters C, Handgretinger R, Sykora KW, Holter W, Kabisch H, Klingebiel T, von Stackelberg A, Group A-RBS. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27(3):377–84.

    Article  PubMed  Google Scholar 

  2. Bader P, Kreyenberg H, von Stackelberg A, Eckert C, Salzmann-Manrique E, Meisel R, Poetschger U, Stachel D, Schrappe M, Alten J, Schrauder A, Schulz A, Lang P, Muller I, Albert MH, Willasch AM, Klingebiel TE, Peters C. Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial. J Clin Oncol. 2015;33(11):1275–84. https://doi.org/10.1200/JCO.2014.58.4631.

    Article  CAS  PubMed  Google Scholar 

  3. Campana D, Pui CH. Minimal residual disease-guided therapy in childhood acute lymphoblastic leukemia. Blood. 2017;129(14):1913–8. https://doi.org/10.1182/blood-2016-12-725804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B, Pogodda M, Proba J, Henze G. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet. 2001;358(9289):1239–41. https://doi.org/10.1016/S0140-6736(01)06355-3.

    Article  CAS  PubMed  Google Scholar 

  5. Eckert C, Hagedorn N, Sramkova L, Mann G, Panzer-Grumayer R, Peters C, Bourquin JP, Klingebiel T, Borkhardt A, Cario G, Alten J, Escherich G, Astrahantseff K, Seeger K, Henze G, von Stackelberg A. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment. Leukemia. 2015;29(8):1648–55. https://doi.org/10.1038/leu.2015.59.

    Article  CAS  PubMed  Google Scholar 

  6. Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2014;2014(1):244–9. https://doi.org/10.1182/asheducation-2014.1.244.

    Article  PubMed  Google Scholar 

  7. van Dongen JJ, van der Velden VH, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009. https://doi.org/10.1182/blood-2015-03-580027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chase ML, Armand P. Minimal residual disease in non-Hodgkin lymphoma – current applications and future directions. Br J Haematol. 2018;180(2):177–88. https://doi.org/10.1111/bjh.14996.

    Article  PubMed  Google Scholar 

  9. Herrera AF, Armand P. Minimal residual disease assessment in lymphoma: methods and applications. J Clin Oncol. 2017;35(34):3877–87. https://doi.org/10.1200/JCO.2017.74.5281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuroda T, Morikawa N, Matsuoka K, Fujino A, Honna T, Nakagawa A, Kumagai M, Masaki H, Saeki M. Prognostic significance of circulating tumor cells and bone marrow micrometastasis in advanced neuroblastoma. J Pediatr Surg. 2008;43(12):2182–5. https://doi.org/10.1016/j.jpedsurg.2008.08.046.

    Article  PubMed  Google Scholar 

  11. Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA, Takahashi K, Glover C, Keane C, Kihira S, Visser B, Callahan J, Kong KA, Faham M, Corbelli KS, Miklos D, Advani RH, Levy R, Hicks RJ, Hertzberg M, Ohgami RS, Gandhi MK, Diehn M, Alizadeh AA. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125(24):3679–87. https://doi.org/10.1182/blood-2015-03-635169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, Shovlin M, Jaffe ES, Staudt LM, Lai C, Steinberg SM, Chen CC, Zheng J, Willis TD, Faham M, Wilson WH. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9. https://doi.org/10.1016/S1470-2045(15)70106-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F, Sommelet-Olive D, Landman-Parker J, Bours D, Michon J, Delattre O. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol. 2003;21(1):85–91.

    Article  PubMed  Google Scholar 

  14. Vo KT, Edwards JV, Epling CL, Sinclair E, Hawkins DS, Grier HE, Janeway KA, Barnette P, McIlvaine E, Krailo MD, Barkauskas DA, Matthay KK, Womer RB, Gorlick RG, Lessnick SL, Mackall CL, DuBois SG. Impact of two measures of micrometastatic disease on clinical outcomes in patients with newly diagnosed ewing sarcoma: a report from the Children’s Oncology Group. Clin Cancer Res. 2016;22(14):3643–50. https://doi.org/10.1158/1078-0432.CCR-15-2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Minard-Colin V, Brugieres L, Reiter A, Cairo MS, Gross TG, Woessmann W, Burkhardt B, Sandlund JT, Williams D, Pillon M, Horibe K, Auperin A, Le Deley MC, Zimmerman M, Perkins SL, Raphael M, Lamant L, Klapper W, Mussolin L, Poirel HA, Macintyre E, Damm-Welk C, Rosolen A, Patte C. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–74. https://doi.org/10.1200/JCO.2014.59.5827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982;79(24):7824–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am J Pathol. 1999;155(5):1479–85. https://doi.org/10.1016/S0002-9440(10)65463-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akasaka T, Muramatsu M, Ohno H, Miura I, Tatsumi E, Fukuhara S, Mori T, Okuma M. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood. 1996;88(3):985–94.

    CAS  PubMed  Google Scholar 

  19. Lovisa F, Mussolin L, Corral L, Pillon M, Cazzaniga G, Biondi A, Rosolen A. IGH and IGK gene rearrangements as PCR targets for pediatric Burkitt’s lymphoma and mature B-ALL MRD analysis. Lab Investig. 2009;89(10):1182–6. https://doi.org/10.1038/labinvest.2009.81.

    Article  CAS  PubMed  Google Scholar 

  20. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. https://doi.org/10.1038/sj.leu.2403202.

    Article  PubMed  Google Scholar 

  21. Agsalda M, Kusao I, Troelstrup D, Shiramizu B. Screening for residual disease in pediatric burkitt lymphoma using consensus primer pools. Adv Hematol. 2009;2009:412163. https://doi.org/10.1155/2009/412163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shiramizu B, Goldman S, Smith L, Agsalda-Garcia M, Galardy P, Perkins SL, Frazer JK, Sanger W, Anderson JR, Gross TG, Weinstein H, Harrison L, Barth MJ, Mussolin L, Cairo MS. Impact of persistent minimal residual disease post-consolidation therapy in children and adolescents with advanced Burkitt leukaemia: a Children’s Oncology Group Pilot Study Report. Br J Haematol. 2015;170(3):367–71. https://doi.org/10.1111/bjh.13443.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Damm-Welk C, Klapper W, Oschlies I, Gesk S, Rottgers S, Bradtke J, Siebert R, Reiter A, Woessmann W. Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. Br J Haematol. 2009;146(3):306–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lamant L, Meggetto F, al Saati T, Brugieres L, de Paillerets BB, Dastugue N, Bernheim A, Rubie H, Terrier-Lacombe MJ, Robert A, Rigal F, Schlaifer D, Shiuta M, Mori S, Delsol G. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood. 1996;87(1):284–91.

    CAS  PubMed  Google Scholar 

  25. Perkins SL, Pickering D, Lowe EJ, Zwick D, Abromowitch M, Davenport G, Cairo MS, Sanger WG. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: a genetic and pathological correlation. Br J Haematol. 2005;131(5):624–7.

    Article  PubMed  Google Scholar 

  26. Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, Delsol G, Campo E. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 1999;94(9):3265–8.

    CAS  PubMed  Google Scholar 

  27. Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088–95.

    CAS  PubMed  Google Scholar 

  28. Ma Z, Cools J, Marynen P, Cui X, Siebert R, Gesk S, Schlegelberger B, Peeters B, De Wolf-Peeters C, Wlodarska I, Morris SW. Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood. 2000;95(6):2144–9.

    CAS  PubMed  Google Scholar 

  29. Meech SJ, McGavran L, Odom LF, Liang X, Meltesen L, Gump J, Wei Q, Carlsen S, Hunger SP. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4--anaplastic lymphoma kinase gene fusion. Blood. 2001;98(4):1209–16.

    Article  CAS  PubMed  Google Scholar 

  30. Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C, Delsol G, Mason D, Campo E. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Investig. 2001;81(3):419–26.

    Article  CAS  PubMed  Google Scholar 

  31. Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T, Mason DY, Delsol G. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood. 2000;95(10):3204–7.

    CAS  PubMed  Google Scholar 

  32. Damm-Welk C, Busch K, Burkhardt B, Schieferstein J, Viehmann S, Oschlies I, Klapper W, Zimmermann M, Harbott J, Reiter A, Woessmann W. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110(2):670–7.

    Article  CAS  PubMed  Google Scholar 

  33. Downing JR, Shurtleff SA, Zielenska M, Curcio-Brint AM, Behm FG, Head DR, Sandlund JT, Weisenburger DD, Kossakowska AE, Thorner P. Molecular detection of the (2;5) translocation of non-Hodgkin’s lymphoma by reverse transcriptase-polymerase chain reaction. Blood. 1995;85(12):3416–22.

    Google Scholar 

  34. Mussolin L, Pillon M, d’Amore ES, Santoro N, Lombardi A, Fagioli F, Zanesco L, Rosolen A. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19(9):1643–7.

    Article  CAS  PubMed  Google Scholar 

  35. Damm-Welk C, Schieferstein J, Schwalm S, Reiter A, Woessmann W. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction. Br J Haematol. 2007;138(4):459–66.

    Article  CAS  PubMed  Google Scholar 

  36. Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149(5):653–68. https://doi.org/10.1111/j.1365-2141.2009.08006.x.

    Article  CAS  PubMed  Google Scholar 

  37. Stark B, Avigad S, Luria D, Manor S, Reshef-Ronen T, Avrahami G, Yaniv I. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer. 2009;52(1):20–5. https://doi.org/10.1002/pbc.21823.

    Article  PubMed  Google Scholar 

  38. Coustan-Smith E, Sandlund JT, Perkins SL, Chen H, Chang M, Abromowitch M, Campana D. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol. 2009;27(21):3533–9. https://doi.org/10.1200/JCO.2008.21.1318.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mussolin L, Buldini B, Lovisa F, Carraro E, Disaro S, Lo Nigro L, d’Amore ES, Pillon M, Basso G. Detection and role of minimal disseminated disease in children with lymphoblastic lymphoma: the AIEOP experience. Pediatr Blood Cancer. 2015;62(11):1906–13. https://doi.org/10.1002/pbc.25607.

    Article  PubMed  Google Scholar 

  40. Dworzak MN, Gaipa G, Ratei R, Veltroni M, Schumich A, Maglia O, Karawajew L, Benetello A, Potschger U, Husak Z, Gadner H, Biondi A, Ludwig WD, Basso G. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytometry B Clin Cytom. 2008;74(6):331–40. https://doi.org/10.1002/cyto.b.20430.

    Article  PubMed  Google Scholar 

  41. Burkhardt B, Woessmann W, Zimmermann M, Kontny U, Vormoor J, Doerffel W, Mann G, Henze G, Niggli F, Ludwig WD, Janssen D, Riehm H, Schrappe M, Reiter A. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24(3):491–9. https://doi.org/10.1200/JCO.2005.02.2707.

    Article  PubMed  Google Scholar 

  42. Reiter A, Schrappe M, Ludwig WD, Tiemann M, Parwaresch R, Zimmermann M, Schirg E, Henze G, Schellong G, Gadner H, Riehm H. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95(2):416–21.

    CAS  PubMed  Google Scholar 

  43. Balbach ST, Makarova O, Bonn BR, Zimmermann M, Rohde M, Oschlies I, Klapper W, Rossig C, Burkhardt B. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia. 2016;30(4):970–3. https://doi.org/10.1038/leu.2015.203.

    Article  CAS  PubMed  Google Scholar 

  44. Bonn BR, Rohde M, Zimmermann M, Krieger D, Oschlies I, Niggli F, Wrobel G, Attarbaschi A, Escherich G, Klapper W, Reiter A, Burkhardt B. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121(16):3153–60. https://doi.org/10.1182/blood-2012-12-474148.

    Article  CAS  PubMed  Google Scholar 

  45. Callens C, Baleydier F, Lengline E, Ben Abdelali R, Petit A, Villarese P, Cieslak A, Minard-Colin V, Rullier A, Moreau A, Baruchel A, Schmitt C, Asnafi V, Bertrand Y, Macintyre E. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966–73. https://doi.org/10.1200/JCO.2011.39.7661.

    Article  CAS  PubMed  Google Scholar 

  46. Mussolin L, Basso K, Pillon M, d’Amore ES, Lombardi A, Luzzatto L, Zanesco L, Rosolen A. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003;17(3):585–9.

    Article  CAS  PubMed  Google Scholar 

  47. Mussolin L, Pillon M, d’Amore ES, Conter V, Piglione M, Lo Nigro L, Garaventa A, Buffardi S, Arico M, Rosolen A. Minimal disseminated disease in high-risk Burkitt’s lymphoma identifies patients with different prognosis. J Clin Oncol. 2011;29(13):1779–84.

    Article  PubMed  Google Scholar 

  48. Busch K, Borkhardt A, Wossmann W, Reiter A, Harbott J. Combined polymerase chain reaction methods to detect c-myc/IgH rearrangement in childhood Burkitt’s lymphoma for minimal residual disease analysis. Haematologica. 2004;89(7):818–25.

    CAS  PubMed  Google Scholar 

  49. Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica. 2005;90(3):382–90.

    CAS  PubMed  Google Scholar 

  50. Mussolin L, Pillon M, Conter V, Piglione M, Lo Nigro L, Pierani P, Micalizzi C, Buffardi S, Basso G, Zanesco L, Rosolen A. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol. 2007;25(33):5254–61.

    Article  PubMed  Google Scholar 

  51. Pillon M, Mussolin L, Carraro E, Conter V, Arico M, Vinti L, Garaventa A, Piglione M, Buffardi S, Sala A, Santoro N, Lo Nigro L, Mura R, Tondo A, Casale F, Farruggia P, Pierani P, Cesaro S, d’Amore ES, Basso G. Detection of prognostic factors in children and adolescents with Burkitt and Diffuse Large B-Cell Lymphoma treated with the AIEOP LNH-97 protocol. Br J Haematol. 2016;175(3):467–75. https://doi.org/10.1111/bjh.14240.

    Article  CAS  PubMed  Google Scholar 

  52. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  53. Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F, Delsol G, Morris SW. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61(23):2939–53.

    Article  CAS  PubMed  Google Scholar 

  54. Damm-Welk C, Mussolin L, Zimmermann M, Pillon M, Klapper W, Oschlies I, d’Amore ES, Reiter A, Woessmann W, Rosolen A. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7.

    Article  PubMed  Google Scholar 

  55. Mussolin L, mm-Welk C, Pillon M, Zimmermann M, Franceschetto G, Pulford K, Reiter A, Rosolen A, Woessmann W. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia. 2013;27(2):416–22.

    Article  CAS  PubMed  Google Scholar 

  56. Damm-Welk C, Yamashita Y, Bench A, Turner S, Lamant L, Verge V, Tosato E, Schieferstein J, Mussolin L. Quality control of standardized methods for NPM-ALK RT-PCR and anti-ALK-antibody-measurement for anaplastic large cell lymphoma -a report of the EICNHL reference laboratory group. Br J Haematol. 2015;171(S1):56.

    Google Scholar 

  57. Iijima-Yamashita Y, Mori T, Nakazawa A, Fukano R, Takimoto T, Tsurusawa M, Kobayashi R, Horibe K. Prognostic impact of minimal disseminated disease and immune response to NPM-ALK in Japanese children with ALK-positive anaplastic large cell lymphoma. Int J Hematol. 2018;107(2):244–50. https://doi.org/10.1007/s12185-017-2338-6.

    Article  CAS  PubMed  Google Scholar 

  58. Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374(1):95–6. https://doi.org/10.1056/NEJMc1511045.

    Article  PubMed  Google Scholar 

  59. Hebart H, Lang P, Woessmann W. Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann Intern Med. 2016;165(8):607–8. https://doi.org/10.7326/L16-0037.

    Article  PubMed  Google Scholar 

  60. Kalinova M, Krskova L, Brizova H, Kabickova E, Kepak T, Kodet R. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma--residual disease monitoring and a correlation with the disease status. Leuk Res. 2008;32(1):25–32. https://doi.org/10.1016/j.leukres.2007.01.002.

    Article  CAS  PubMed  Google Scholar 

  61. Krumbholz M, Woessmann W, Zierk J, Seniuk D, Ceppi P, Zimmermann M, Singh VK, Metzler M, Damm-Welk C. Characterization and diagnostic application of genomic NPM-ALK fusion sequences in anaplastic large-cell lymphoma. Oncotarget. 2018;9:26543–55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Woessmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mussolin, L., Damm-Welk, C., Woessmann, W. (2019). Minimal Disseminated and Minimal Residual Disease in Pediatric Non-Hodgkin Lymphoma. In: Abla, O., Attarbaschi, A. (eds) Non-Hodgkin's Lymphoma in Childhood and Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-030-11769-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11769-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11768-9

  • Online ISBN: 978-3-030-11769-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics