Advertisement

3D Model Registration by Generalized Procrustes Analysis

  • Fabio CrosillaEmail author
  • Alberto Beinat
  • Andrea Fusiello
  • Eleonora Maset
  • Domenico Visintini
Chapter
  • 272 Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 590)

Abstract

Photogrammetric computer vision techniques and laser scanning systems can directly provide 3D models of real objects by automatically or selectively sampling the positions of a set of representative surface points. Depending on the dimension and on the shape complexity of the geometric entity under study, its complete survey often requires a multiple view approach that leads to the creation of a set of partial and independent 3D models of the same object. These parts must be then joined together to reconstruct the complete object model.

References

  1. A. Beinat, F. Crosilla, Generalized procrustes analysis for size and shape 3D object reconstruction, in Optical 3-D Measurement Techniques (Wichmann Verlag, 2001), pp. 345–353Google Scholar
  2. P. Besl, N. McKay, A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. Y. Chen, G. Medioni, Object modeling by registration of multiple range images, in Proceedings of the IEEE International Conference on Robotics and Automation (1991), pp. 2724–2729Google Scholar
  4. F. Crosilla, A. Beinat, Use of generalised procrustes analysis for the photogrammetric block adjustment by independent models. ISPRS J. Photogrammetry Remote Sens. 56(3), 195–209 (2002)CrossRefGoogle Scholar
  5. S. Du, N. Zheng, S. Ying, Q. You, Y. Wu, An extension of the ICP algorithm considering scale factor, in IEEE International Conference on Image Processing, ICIP 2007, vol. 5 (IEEE, 2007), pp. 193–196Google Scholar
  6. F.R. Hampel, P.J. Rousseeuw, E.M. Ronchetti, W.A. Stahel, Robust Statistics: the Approach Based on Influence Functions. Wiley Series in Probability and Mathematical Statistics (Wiley, 1986)Google Scholar
  7. E. Maset, F. Arrigoni, A. Fusiello, Practical and efficient multi-view matching, in Proceedings of IEEE International Conference on Computer Vision, vol. 2 (2017), pp. 4578–4586Google Scholar
  8. S. Petitjean, A survey of methods for recovering quadrics in triangle meshes. ACM Comput. Surv. 34(2), 211–262 (2002)CrossRefGoogle Scholar
  9. S. Rusinkiewicz, M. Levoy, Efficient variants of the ICP algorithm, in Proceedings of the International Conference on 3-D Digital Imaging and Modeling (2001), pp. 145–152Google Scholar
  10. J. Salvi, C. Matabosch, D. Fofi, J. Forest, A review of recent range image registration methods with accuracy evaluation. Image Vision Comput. 25(5), 578–596 (2007)CrossRefGoogle Scholar
  11. R. Toldo, A. Beinat, F. Crosilla. Global registration of multiple point clouds embedding the generalized procrustes analysis into an ICP framework, in International Symposium on 3D Data Processing, Visualization and Transmission (2010), pp. 109–122Google Scholar
  12. X. Zhou, M. Zhu, K. Daniilidis, Multi-image matching via fast alternating minimization, in Proceedings of the International Conference on Computer Vision (2015), pp. 4032–4040Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Fabio Crosilla
    • 1
    Email author
  • Alberto Beinat
    • 1
  • Andrea Fusiello
    • 2
  • Eleonora Maset
    • 1
  • Domenico Visintini
    • 1
  1. 1.University of UdineUdineItaly
  2. 2.University of UdineUdineItaly

Personalised recommendations