Advertisement

Applications of Anisotropic Procrustes Analysis

  • Fabio CrosillaEmail author
  • Alberto Beinat
  • Andrea Fusiello
  • Eleonora Maset
  • Domenico Visintini
Chapter
  • 261 Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 590)

Abstract

As extensively shown in the previous chapters, Procrustes Analysis allows to easily perform transformations among corresponding point coordinates belonging to a generic k-dimensional space and it is therefore suited to solve problems encountered in geodesy, photogrammetric computer vision, and laser scanning.

References

  1. E.F. Ackermann, Some results of an investigation into the theoretical precision of planimetric block adjustment. Photogrammetria, 19(8) (1962)CrossRefGoogle Scholar
  2. D. Akca, Generalized procrustes analysis and its applications in photogrammetry. Internal Technical Report at the Institute of Geodesy and Photogrammetry - ETH, Zurich (2003)Google Scholar
  3. A. Ansar, K. Daniilidis, Linear pose estimation from points or lines. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 578–589 (2003)CrossRefGoogle Scholar
  4. M. Arie-Nachimson, S.Z. Kovalsky, I. Kemelmacher-Shlizerman, A. Singer, R. Basri. Global motion estimation from point matches. Proceedings of the Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and Transmission (2012)Google Scholar
  5. A.C. Atkinson and M. Riani. Robust Diagnostic Regression Analysis. Springer Series in Statistics. Springer, 2000. ISBN 9780387950174Google Scholar
  6. W. Baarda, S-transformations and criterion matrices. Netherlands Geodetic Commission, Publications on Geodesy, New series, 5(1) (1973)Google Scholar
  7. P.L. Baetsle. Compensation des blocs photogrammetriques en altimetrie par relaxation. Bull. Soc. Belg. Photogramm. 4 (1956)Google Scholar
  8. I. Ben-Gal. Outlier detection, in Data Mining and Knowledge Discovery Handbook, chapter 7, pages 131–146–146. Springer US, 2005Google Scholar
  9. M. Brand, Incremental singular value decomposition of uncertain data with missing values, in Proceedings of the European Conference on Computer Vision (Springer, 2002), pp. 707–720Google Scholar
  10. M. Brand, M. Antone, S. Teller. Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem, in Proceedings of the European Conference on Computer Vision (2004)Google Scholar
  11. D. Brown, On first and second order partitioned regression. Internal working paper, DBA Systems Inc (1968)Google Scholar
  12. D. Brown. A solution to the general problem of multiple station analytical stereotriangulation. Technical Report AFMTC TR 58-8, Patrick Airforce Base, Florida (1958)Google Scholar
  13. C.-S. Chen, W.-Y. Chang, On pose recovery for generalized visual sensors. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 848–861 (2004)CrossRefGoogle Scholar
  14. J.J.F. Commandeur. Matching Configurations (DSWO Press, 1991)Google Scholar
  15. M. Cramer. The UAVLGL BW project - a NMCA case study, in Photogrammetric Week ’13, pp. 165–179. Wichmann, Berlin/Offenbach (2013)Google Scholar
  16. M. Cunietti. Use of strips connected to blocks for large scale mapping. Results of Experimental Research Organized by Commission B of the OEEPE from 1959 through 1966 - Frankfurt a.M. (1968)Google Scholar
  17. L. Davies, U. Gather, The identification of multiple outliers. J. Am. Stat. Assoc., 88(423), 782–792 (1993). ISSN 01621459CrossRefGoogle Scholar
  18. J. de Leeuw. Block-relaxation algorithms in statistics, in Information Systems and Data Analysis (Springer-Verlag, 1994) pp. 308–325Google Scholar
  19. D.F. DeMenthon, L.S. Davis, Model-based object pose in 25 lines of code. Int. J. Comput. Vis. 15, 123–141 (1995)CrossRefGoogle Scholar
  20. M. Farenzena, A. Fusiello, R. Gherardi, Structure-and-motion pipeline on a hierarchical cluster tree, in IEEE International Workshop on 3-D Digital Imaging and Modeling, pp. 1489–1496 (October 3-4 2009)Google Scholar
  21. S. Finsterwalder, W. Scheufele, Das Rückwärtseinschneiden im Raum (Verlag der K, Akademie, 1903)Google Scholar
  22. P.D. Fiore, Efficient linear solution of exterior orientation. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 140–148 (2001)CrossRefGoogle Scholar
  23. M.A. Fischler, R.C. Bolles, Random Sample Consensus: a paradigm model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefGoogle Scholar
  24. W. Förstner, The reliability of block triangulations. Photogramm. Eng. Remote. Sens. 51(8), 1137–1149 (1985)Google Scholar
  25. A. Fusiello, F. Crosilla, Fast and resistant procrustean bundle adjustment. ISPRS Ann. Photogramm., Remote. Sens. Spat. Inf. Sci., III-3, 35–41 (2016)CrossRefGoogle Scholar
  26. A. Fusiello, F. Crosilla, Solving bundle block adjustment by generalized anisotropic procrustes analysis. ISPRS J. Photogramm. Remote. Sens., 102, 209–221 (2015). ISSN 0924-2716CrossRefGoogle Scholar
  27. A. Fusiello, F. Crosilla, F. Malapelle, Procrustean point-line registration and the npnp problem, in Proceedings of the International Conference on 3D Vision (3DV), pp. 250–255. IEEE (2015)Google Scholar
  28. A. Fusiello, E. Maset, F. Crosilla, Reliable exterior orientation by a robust anisotropic orthogonal procrustes algorithm, in Proceedings of the ISPRS Workshop 3D-ARCH 2013: 3D Virtual Reconstruction and Visualization of Complex Architectures, volume XL-5/W1 of ISPRS Archives, pp. 81–86 (2013)CrossRefGoogle Scholar
  29. A. Fusiello, A matter of notation: several uses of the kronecker product in 3d computer vision. Pattern Recognit. Lett. 28(15), 2127–2132 (2007)CrossRefGoogle Scholar
  30. X.-S. Gao, X.-R. Hou, J. Tang, H.-F. Cheng, Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25, 930–943 (2003)CrossRefGoogle Scholar
  31. V. Garro, F. Crosilla, A. Fusiello, Solving the pnp problem with anisotropic orthogonal procrustes analysis, in Second Joint 3DIM/3DPVT Conference: 3D Imaging (Modeling, Processing, Visualization and Transmission, 2012), pp. 262–269Google Scholar
  32. R. Gherardi, M. Farenzena, A. Fusiello, Improving the efficiency of hierarchical structure-and-motion, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1594 – 1600 (13-18 June 2010)Google Scholar
  33. J.C. Gower, G.B. Dijksterhuis, Procrustes Problems (Oxford University Press, Oxford Statistical Science Series, 2004)CrossRefGoogle Scholar
  34. A.W. Gruen, E.P. Baltsavias, Adaptive least squares correlation with geometrical constraints, in Computer Vision for Robots, vol. 0595 of Proceedings of SPIE, pp. 72–82 (1986)Google Scholar
  35. A.W. Gruen, Precision and reliability aspects in close range photogrammetry. Int. Arch. Photogrammetry 11(23B), 378–391 (1980)Google Scholar
  36. G.A. Grunert, Das pothenotische problem in erweiterter gestalt nebst über seine anwendungen in geodäsie. Archiv für Mathematik und Physik (1841)Google Scholar
  37. M.S. Gyer, The inversion of the normal equations of analytical aerotriangulation by the method of recursive partitioning. Technical Report RADC-TR-67-69, Rome Air Development Center, NY (1967)Google Scholar
  38. A.S. Hadi, J.S. Simonoff, Procedures for the identification of multiple outliers in linear models. J. Am. Stat. Assoc., 88(424), 1264–1272 (1993). ISSN 01621459CrossRefGoogle Scholar
  39. R.M. Haralick, H. Joo, C. Lee, X. Zhuang, V.G. Vaidya, M.B. Kim, Pose estimation from corresponding point data. IEEE Trans. Syst., Man Cybern. 19(6), 1426–1446 (1989)CrossRefGoogle Scholar
  40. R.M. Haralick, C.-N. Lee, K. Ottenberg, M. Nölle, Review and analysis of solutions of the three point perspective pose estimation problem. Int. J. Comput. Vis. 13, 331–356 (1994)CrossRefGoogle Scholar
  41. R.I. Hartley, F.k Schaffalitzky, PowerFactorization: 3D reconstruction with missing or uncertain data, in Australia-Japan advanced workshop on computer vision, vol. 74, pp. 76–85 (2003)Google Scholar
  42. R.I. Hartley. Minimizing algebraic error, in Proceedings of the IEEE International Conference on Computer Vision (1998)Google Scholar
  43. R.I. Hartley, J. Trumpf, Y. Dai, H. Li, Rotation averaging. Int. J. Comput, Vis. (2013)CrossRefGoogle Scholar
  44. W. Hartmann, M. Havlena, K. Schindler, Recent developments in large-scale tie-point matching. ISPRS J. Photogramm. Remote. Sens. 115, 47–62 (2015). ISSN 0924-2716CrossRefGoogle Scholar
  45. J.A. Hesch, S.I. Roumeliotis, A direct least-squares (dls) solution for PnP, in Proceedings of the International Conference on Computer Vision (2011)Google Scholar
  46. A. Heyden, Projective structure and motion from image sequences using subspace methods, in Scandinavian Conference on Image Analysis, pp. 963–968 (1997)Google Scholar
  47. P.W. Holland, R.E. Welsch, Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 6(9), 813–827 (1977)CrossRefGoogle Scholar
  48. R. Horaud, F. Dornaika, B. Lamiroy, Object pose: the link between weak perspective, paraperspective, and full perspective. Int. J. Comput. Vis. 22, 173–189 (1997)CrossRefGoogle Scholar
  49. N. Jiang, Z. Cui, P. Tan, A global linear method for camera pose registration, in Proceedings of the International Conference on Computer Vision (2013)Google Scholar
  50. F. Kahl, R.I. Hartley, Multiple-view geometry under the \(l_{\infty }\)-norm. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1603–1617 (2008)CrossRefGoogle Scholar
  51. R. Kaucic, R. I. Hartley, N.Y. Dano, Plane-based projective reconstruction, in Proceedings of the International Conference on Computer Vision, pp. 420–427 (2001)Google Scholar
  52. R. Kennedy, L. Balzano, S.J. Wright, and C.J. Taylor. Online algorithms for factorization-based structure from motion. CoRR, abs/1309.6964 (2013)Google Scholar
  53. L. Kneip, P. Furgale, R. Siegwart. Using multi-camera systems in robotics: Efficient solutions to the NPnP problem, inProceedings of the IEEE International Conference on Robotics and Automation (2013)Google Scholar
  54. L. Kneip, H. Li, and Y. Seo. UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability, in 13th European Conference on Computer Vision, pp. 127–142 (2014)Google Scholar
  55. L. Kneip, D. Scaramuzza, R. Siegwart. A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)Google Scholar
  56. K. Kraus, Photogrammetry: Advanced methods and applications, volume 2. Dümmler (1997). ISBN 9783427786948Google Scholar
  57. R. Kumar, A.R. Hanson, Robust methods for estimating pose and a sensitivity analysis. CVGIP: Image Understanding, 60, 313–342 (1994)CrossRefGoogle Scholar
  58. V. Lepetit, F. Moreno-Noguer, P. Fua, Epnp: an accurate O(n) solution to the pnp problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)CrossRefGoogle Scholar
  59. J. Lingoes, I. Borg, A direct approach to individual differences scaling using increasingly complex transformations. Psychometrika 43(4), 491–519 (1978)CrossRefGoogle Scholar
  60. D.G. Lowe, Fitting parameterized three-dimensional models to images. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 441–450 (1991)CrossRefGoogle Scholar
  61. C. Lu, Gregory, D. Hager, E. Mjolsness, Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Anal. Mach. Intell., 22, 610–622 (2000)CrossRefGoogle Scholar
  62. D. Martinec, T. Pajdla, Robust rotation and translation estimation in multiview reconstruction, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  63. E. Maset, F. Crosilla, A. Fusiello, Errors-in-variables anisotropic extended orthogonal procrustes analysis. IEEE Geosci. Remote. Sens. Lett. 14(1), 57–61 (2017)CrossRefGoogle Scholar
  64. F. Mosteller, J.W. Tukey, Data analysis and regression: a second course in statistics. Addison-Wesley Series in Behavioral Science: Quantitative Methods (1977)Google Scholar
  65. P. Moulon, P. Monasse, R. Marlet, Global fusion of relative motions for robust, accurate and scalable structure from motion, in Proceedings of the International Conference on Computer Vision, pp. 3248–3255 (2013)Google Scholar
  66. D. Nistér, An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)CrossRefGoogle Scholar
  67. J. Oliensis and R.I. Hartley, Iterative extensions of the sturm/triggs algorithm: Convergence and nonconvergence. IEEE Trans. Pattern Anal. Mach. Intell., 29(12), 2217–2233 (2007). ISSN 0162-8828CrossRefGoogle Scholar
  68. J. Oliensis, Fast and accurate self-calibration, in Proceedings of the International Conference on Computer Vision (1999)Google Scholar
  69. L. Quan, Z. Lan, Linear n-point camera pose determination. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 774–780 (1999)CrossRefGoogle Scholar
  70. C. Rother, S. Carlsson, Linear multi view reconstruction and camera recovery using a reference plane. Int. J. Comput. Vis. 49(2–3), 117–141 (2002)CrossRefGoogle Scholar
  71. P.J. Rousseeuw, Least median of squares regression. J. Am. Stat. Assoc., 79(388), 871–880 (1984). ISSN 01621459CrossRefGoogle Scholar
  72. G. Schweighofer, A. Pinz, Globally optimal o(n) solution to the pnp problem for general camera models, in Proceedings of the British Machine Vision Conference, pp. 55.1–55.10 (2008)Google Scholar
  73. C.V. Stewart, Robust parameter estimation in computer vision. SIAM Rev. 41(3), 513–537 (1999)CrossRefGoogle Scholar
  74. C. Strecha, W. Von Hansen, L. Van Gool, P. Fua, U. Thoennessen, On benchmarking camera calibration and multi-view stereo for high resolution imagery, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  75. J. F. Sturm, Using SEDUMI 1.02, a MATLAB\(^{*}\) toolbox for optimization over symmetric cones, 2001. Downloadable from http://sedumi.mcmaster.ca
  76. P. Sturm, B. Triggs, A factorization based algorithm for multi-image projective structure and motion, in Proceedings of the European Conference on Computer Vision, pp. 709–720 (1996)Google Scholar
  77. P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto, Camera models and fundamental concepts used in geometric computer vision. Found. Trends Comput. Graph. Vis. 6, 1–183 (2011)CrossRefGoogle Scholar
  78. C. Sweeney, V. Fragoso, T. Höllerer, M. Turk, gDLS: A scalable solution to the generalized pose and scale problem, in 13th European Conference on Computer Vision, pp. 16–31 (2014)Google Scholar
  79. C. Sweeney. Theia Multiview Geometry Library: Tutorial & Reference. University of California Santa Barbara (2015). http://www.theia-sfm.org/
  80. B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment - a modern synthesis, in Proceedings of the International Workshop on Vision Algorithms (Springer-Verlag, 2000), pp. 298–372. ISBN 3-540-67973-1Google Scholar
  81. J. Ventura, C. Arth, G. Reitmayr, D. Schmalstieg. A minimal solution to the generalized pose-and-scale problem, in Computer Vision and Pattern Recognition, Conference on (2014)Google Scholar
  82. P. Verboon, W.J. Heiser. Resistant orthogonal procrustes analysis. J. Cl.Ification, 9(2), 237–256 (1992). ISSN 0176-4268CrossRefGoogle Scholar
  83. K. Wilson, N. Snavely, Robust global translations with 1DSfM, in Proceedings of the European Conference on Computer Vision, pp. 61–75 (2014)Google Scholar
  84. J. Zhang, M. Boutin, D.G. Aliaga, Robust bundle adjustment for structure from motion, in Proceedings of the International Conference on Image Processing, pp. 2185–2188 (2006)Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Fabio Crosilla
    • 1
    Email author
  • Alberto Beinat
    • 1
  • Andrea Fusiello
    • 2
  • Eleonora Maset
    • 1
  • Domenico Visintini
    • 1
  1. 1.University of UdineUdineItaly
  2. 2.University of UdineUdineItaly

Personalised recommendations