Isotopic Tracers for the Measurement of Metabolic Flux Rates

  • Carine BeysenEmail author
  • Thomas E. Angel
  • Marc K. Hellerstein
  • Scott M. Turner


Human metabolism is composed of complex networks, and objective, reliable measures (biomarkers) are needed to guide drug developers, disease researchers and clinicians toward safe and efficacious outcomes. The combination of stable isotope labeling with sensitive mass spectrometric analytic techniques is providing increasingly important tools for drug development and clinical studies. The use of stable isotopes allows the measurement of fluxes through metabolic pathways in vivo and provides information about what is newly produced and removed within a biological system and how rapidly molecules are being synthesized and degraded in disease physiology or response to treatment. This chapter describes select examples of applications for in vivo assessment of lipid, glucose, and protein metabolic flux. The approaches described use deuterated water and other stable isotope-labeled tracers that can be used effectively in early clinical research studies to study disease pathology and drug efficacy.


Lipid metabolism Glucose metabolism Lipoprotein metabolism Protein synthesis In vivo Metabolic flux Isotope tracer Mass isotopomer distribution analysis (MIDA) Liver Muscle Adipose Translational Biomarker De novo lipogenesis Cell proliferation Endogenous glucose production Gluconeogenesis Glycogenolysis Glucose absorption Glycolysis Deuterated water GC/MS LC-MS/MS Nonalcoholic fatty liver disease (NAFLD) Nonalcoholic steatohepatitis (NASH) 


  1. 1.
    Buchanan JM. Biochemistry during the life and times of Hans Krebs and Fritz Lipmann. J Biol Chem. 2002;277(37):33531–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Waterlow JC, editor. Protein turnover [Internet]. Wallingford: CABI; 2006 [cited 2018 May 26]. Available from:
  3. 3.
    Wolfe RR, Chinkes DL. Isotope tracers in metabolic research: principles and practice of kinetic analysis. 2nd ed. Hoboken: Wiley-Liss; 2004. p. 488.Google Scholar
  4. 4.
    Schoenheimer R, Rittenberg D. The study of intermediary metabolism of animals with the aid of isotopes. Physiol Rev. 1940;20(2):218–48.CrossRefGoogle Scholar
  5. 5.
    Hellerstein MK, Murphy E. Stable isotope-mass spectrometric measurements of molecular fluxes in vivo: emerging applications in drug development. Curr Opin Mol Ther. 2004;6(3):249–64.PubMedGoogle Scholar
  6. 6.
    Turner SM, Hellerstein MK. Emerging applications of kinetic biomarkers in preclinical and clinical drug development. Curr Opin Drug Discov Devel. 2005;8(1):115–26.PubMedGoogle Scholar
  7. 7.
    Klein PD, Klein ER. Stable isotopes: origins and safety. J Clin Pharmacol. 1986;26(6):378–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Koletzko B, Sauerwald T, Demmelmair H. Safety of stable isotope use. Eur J Pediatr. 1997;156(Suppl 1):S12–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Koletzko B, Demmelmair H, Hartl W, Kindermann A, Koletzko S, Sauerwald T, et al. The use of stable isotope techniques for nutritional and metabolic research in paediatrics. Early Hum Dev. 1998;53(Suppl):S77–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Dufner D, Previs SF. Measuring in vivo metabolism using heavy water. Curr Opin Clin Nutr Metab Care. 2003;6(5):511–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Rachdaoui N, Austin L, Kramer E, Previs MJ, Anderson VE, Kasumov T, et al. Measuring proteome dynamics in vivo: as easy as adding water? Mol Cell Proteomics. 2009;8(12):2653–63.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Jones PJ, Leatherdale ST. Stable isotopes in clinical research: safety reaffirmed. Clin Sci. 1991;80(4):277–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Di Buono M, Jones PJ, Beaumier L, Wykes LJ. Comparison of deuterium incorporation and mass isotopomer distribution analysis for measurement of human cholesterol biosynthesis. J Lipid Res. 2000;41(9):1516–23.PubMedGoogle Scholar
  14. 14.
    Beysen C, Murphy EJ, McLaughlin T, Riiff T, Lamendola C, Turner HC, et al. Whole-body glycolysis measured by the deuterated-glucose disposal test correlates highly with insulin resistance in vivo. Diabetes Care. 2007;30(5):1143–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia. 2012;55(2):432–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Beysen C, Murphy EJ, Nagaraja H, Decaris M, Riiff T, Fong A, et al. A pilot study of the effects of pioglitazone and rosiglitazone on de novo lipogenesis in type 2 diabetes. J Lipid Res. 2008;49(12):2657–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Borén J, Taskinen M-R, Adiels M. Kinetic studies to investigate lipoprotein metabolism. J Intern Med. 2012;271(2):166–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab. 2004;286(4):E577–88.PubMedCrossRefGoogle Scholar
  19. 19.
    Previs SF, McLaren DG, Wang S-P, Stout SJ, Zhou H, Herath K, et al. New methodologies for studying lipid synthesis and turnover: looking backwards to enable moving forwards. Biochim Biophys Acta. 2014;1842(3):402–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Barrett PHR, Chan DC, Watts GF. Thematic review series: patient-oriented research. Design and analysis of lipoprotein tracer kinetics studies in humans. J Lipid Res. 2006;47(8):1607–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Chan DC, Barrett PHR, Watts GF. Recent studies of lipoprotein kinetics in the metabolic syndrome and related disorders. Curr Opin Lipidol. 2006;17(1):28–36.PubMedCrossRefGoogle Scholar
  22. 22.
    White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E. Association of in vivo adipose tissue cellular kinetics with markers of metabolic health in humans. J Clin Endocrinol Metab. 2017;102(7):2171–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E. Differences in in vivo cellular kinetics in abdominal and femoral subcutaneous adipose tissue in women. Diabetes. 2016;65(6):1642–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gasier HG, Fluckey JD, Previs SF. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr Metab (Lond). 2010;7:31.Google Scholar
  25. 25.
    Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF. Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 2011;25(9):3240–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014;28(6):2705–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Harwood HJ. Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition. Expert Opin Ther Targets. 2005;9(2):267–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr. 1996;16:523–57.PubMedCrossRefGoogle Scholar
  29. 29.
    Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Tuvdendorj D, Chandalia M, Batbayar T, Saraf M, Beysen C, Murphy EJ, et al. Altered subcutaneous abdominal adipose tissue lipid synthesis in obese, insulin-resistant humans. Am J Physiol Endocrinol Metab. 2013;305(8):E999–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hudgins LC, Parker TS, Levine DM, Hellerstein MK. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J Clin Endocrinol Metab. 2011;96(3):861–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Stanhope KL, Griffen SC, Bremer AA, Vink RG, Schaefer EJ, Nakajima K, et al. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions. Am J Clin Nutr. 2011;94(1):112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cramer CT, Goetz B, Hopson KLM, Fici GJ, Ackermann RM, Brown SC, et al. Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. J Lipid Res. 2004;45(7):1289–301.PubMedCrossRefGoogle Scholar
  34. 34.
    Leitch CA, Jones PJ. Measurement of human lipogenesis using deuterium incorporation. J Lipid Res. 1993;34(1):157–63.PubMedGoogle Scholar
  35. 35.
    Hellerstein MK, Christiansen M, Kaempfer S, Kletke C, Wu K, Reid JS, et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest. 1991;87(5):1841–52.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schoenheimer R. The dynamic state of body constituents [Internet]. 2nd ed. Cambridge: Mass Harvard University Press; 1946. [cited 2018 May 26]. Available from: Scholar
  37. 37.
    Busch R, Neese RA, Awada M, Hayes GM, Hellerstein MK. Measurement of cell proliferation by heavy water labeling. Nat Protoc. 2007;2(12):3045–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Price JC, Holmes WE, Li KW, Floreani NA, Neese RA, Turner SM, et al. Measurement of human plasma proteome dynamics with (2)H(2)O and liquid chromatography tandem mass spectrometry. Anal Biochem. 2012;420(1):73–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Holmes WE, Angel TE, Li KW, Hellerstein MK. Dynamic proteomics: in vivo proteome-wide measurement of protein kinetics using metabolic labeling. Methods Enzymol. 2015;561:219–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Lawitz EJ, Coste A, Poordad F, Alkhouri N, Loo N, McColgan BJ, et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic De novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2018;16(12):1983–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Hellerstein MK, Neese RA. Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am J Phys. 1999;276(6 Pt 1):E1146–70.Google Scholar
  42. 42.
    Chinkes DL, Aarsland A, Rosenblatt J, Wolfe RR. Comparison of mass isotopomer dilution methods used to compute VLDL production in vivo. Am J Phys. 1996;271(2 Pt 1):E373–83.Google Scholar
  43. 43.
    Bederman IR, Reszko AE, Kasumov T, David F, Wasserman DH, Kelleher JK, et al. Zonation of labeling of lipogenic acetyl-CoA across the liver: implications for studies of lipogenesis by mass isotopomer analysis. J Biol Chem. 2004;279(41):43207–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Vedala A, Wang W, Neese RA, Christiansen MP, Hellerstein MK. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J Lipid Res. 2006;47(11):2562–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Faix D, Neese R, Kletke C, Wolden S, Cesar D, Coutlangus M, et al. Quantification of menstrual and diurnal periodicities in rates of cholesterol and fat synthesis in humans. J Lipid Res. 1993;34(12):2063–75.PubMedGoogle Scholar
  46. 46.
    Siler SQ, Neese RA, Hellerstein MK. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr. 1999;70(5):928–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Beysen C, Ruddy M, Stoch A, Mixson LA, Rosko K, Riiff T, et al. Dose-dependent quantitative effects of acute fructose administration on hepatic de novo lipogenesis in healthy humans. Am J Physiol Endocrinol Metab. 2018;315(1):E126–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Stiede K, Miao W, Blanchette HS, Beysen C, Harriman G, Harwood HJ, et al. Acetyl-coenzyme a carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology. 2017;66(2):324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Griffith DA, Kung DW, Esler WP, Amor PA, Bagley SW, Beysen C, et al. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J Med Chem. 2014;57(24):10512–26.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322–34.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Flannery C, Dufour S, Rabøl R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes. 2012;61(11):2711–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kim C-W, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 2017;26(2):394–406.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, et al. Acetyl-CoA Carboxylase inhibition reverses nafld and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology. 2018;68(6):2197–211.PubMedCrossRefGoogle Scholar
  55. 55.
    Freckmann G, Hagenlocher S, Baumstark A, Jendrike N, Gillen RC, Rössner K, et al. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J Diabetes Sci Technol. 2007;1(5):695–703.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Steele R, Wall JS, De Bodo RC, Altszuler N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Phys. 1956;187(1):15–24.CrossRefGoogle Scholar
  57. 57.
    Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Katz J, Rognstad R. Futile cycles in the metabolism of glucose. Curr Top Cell Regul. 1976;10:237–89.PubMedCrossRefGoogle Scholar
  59. 59.
    Rigalleau V, Beylot M, Laville M, Guillot C, Deleris G, Aubertin J, et al. Measurement of post-absorptive glucose kinetics in non-insulin-dependent diabetic patients: methodological aspects. Eur J Clin Investig. 1996;26(3):231–6.CrossRefGoogle Scholar
  60. 60.
    Glauber H, Wallace P, Brechtel G. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM. Diabetes. 1987;36(10):1187–94.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen YD, Swislocki AL, Jeng CY, Juang JH, Reaven GM. Effect of time on measurement of hepatic glucose production. J Clin Endocrinol Metab. 1988;67(5):1084–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Hovorka R, Eckland DJ, Halliday D, Lettis S, Robinson CE, Bannister P, et al. Constant infusion and bolus injection of stable-label tracer give reproducible and comparable fasting HGO. Am J Phys. 1997;273(1 Pt 1):E192–201.Google Scholar
  63. 63.
    Barrett PH, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metab Clin Exp. 1998;47(4):484–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest. 1997;100(5):1305–19.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Neese RA, Schwarz J-M, Faix D, Turner S, Letscher A, Vu D, et al. Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. J Biol Chem. 1995;270(24):14452–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Hellerstein MK, Neese RA. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am J Phys. 1992;263(5 Pt 1):E988–1001.Google Scholar
  68. 68.
    Hellerstein MK, Kaempfer S, Reid JS, Wu K, Shackleton CH. Rate of glucose entry into hepatic uridine diphosphoglucose by the direct pathway in fasted and fed states in normal humans. Metab Clin Exp. 1995;44(2):172–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Basu R, Basu A, Johnson CM, Schwenk WF, Rizza RA. Insulin dose-response curves for stimulation of splanchnic glucose uptake and suppression of endogenous glucose production differ in nondiabetic humans and are abnormal in people with type 2 diabetes. Diabetes. 2004;53(8):2042–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Steele R, Bishop JS, Dunn A, Altszuler N, Rathbeb I, Debodo RC. Inhibition by insulin of hepatic glucose production in the normal dog. Am J Phys. 1965;208:301–6.CrossRefGoogle Scholar
  71. 71.
    Cowan JS, Hetenyi G Jr. Glucoregulatory responses in normal and diabetic dogs recorded by a new tracer method. Metab Clin Exp. 1971;20(4):360–72.PubMedCrossRefGoogle Scholar
  72. 72.
    Hother-Nielsen O. On the appropriate use of the primed-constant tracer infusion technique. Diabete Metab. 1994;20(6):568–70.PubMedGoogle Scholar
  73. 73.
    Staehr P, Hojlund K, Hother-Nielsen O, Holst JJ, Beck-Nielsen H. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in type 2 diabetes? Diabet Med. 2003;20(10):816–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Steele R, Bjerknes C, Rathgeb I, Altszuler N. Glucose uptake and production during the oral glucose tolerance test. Diabetes. 1968;17(7):415–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Mari A, Wahren J, DeFronzo RA, Ferrannini E. Glucose absorption and production following oral glucose: comparison of compartmental and arteriovenous-difference methods. Metab Clin Exp. 1994;43(11):1419–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Dalla Man C, Caumo A, Basu R, Rizza R, Toffolo G, Cobelli C. Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. Am J Physiol Endocrinol Metab. 2004;287(4):E637–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, Cobelli C, et al. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996;97(1):126–32.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Basu R, Di Camillo B, Toffolo G, Basu A, Shah P, Vella A, et al. Use of a novel triple-tracer approach to assess postprandial glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(1):E55–69.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Haidar A, Elleri D, Allen JM, Harris J, Kumareswaran K, Nodale M, et al. Validity of triple- and dual-tracer techniques to estimate glucose appearance. Am J Physiol Endocrinol Metab. 2012;302(12):E1493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rossetti L, Giaccari A. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats. J Clin Invest. 1990;85(6):1785–92.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Woerle HJ, Meyer C, Dostou JM, Gosmanov NR, Islam N, Popa E, et al. Pathways for glucose disposal after meal ingestion in humans. Am J Physiol Endocrinol Metab. 2003;284(4):E716–25.PubMedCrossRefGoogle Scholar
  82. 82.
    Del Prato S, Bonadonna RC, Bonora E, Gulli G, Solini A, Shank M, et al. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 1993;91(2):484–94.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Galgani JE, Ravussin E. Postprandial whole-body glycolysis is similar in insulin-resistant and insulin-sensitive non-diabetic humans. Diabetologia. 2012;55(3):737–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Christiansen MP, Linfoot PA, Neese RA, Hellerstein MK. Effect of dietary energy restriction on glucose production and substrate utilization in type 2 diabetes. Diabetes. 2000;49(10):1691–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels. Diabetes Care. 2010;33(8):1859–64.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28(7):1547–54.PubMedCrossRefGoogle Scholar
  87. 87.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.CrossRefGoogle Scholar
  88. 88.
    Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK, Skene AM, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) study. J Am Coll Cardiol. 2007;49(17):1772–80.PubMedCrossRefGoogle Scholar
  89. 89.
    Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124(2):509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Foster DM, Barrett PH, Toffolo G, Beltz WF, Cobelli C. Estimating the fractional synthetic rate of plasma apolipoproteins and lipids from stable isotope data. J Lipid Res. 1993;34(12):2193–205.PubMedGoogle Scholar
  92. 92.
    Kasumov T, Willard B, Li L, Li M, Conger H, Buffa JA, et al. 2H2O-based high-density lipoprotein turnover method for the assessment of dynamic high-density lipoprotein function in mice. Arterioscler Thromb Vasc Biol. 2013;33(8):1994–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Welty FK, Lichtenstein AH, Barrett PH, Dolnikowski GG, Schaefer EJ. Human apolipoprotein (Apo) B-48 and ApoB-100 kinetics with stable isotopes. Arterioscler Thromb Vasc Biol. 1999;19(12):2966–74.PubMedCrossRefGoogle Scholar
  94. 94.
    Lichtenstein AH, Cohn JS, Hachey DL, Millar JS, Ordovas JM, Schaefer EJ. Comparison of deuterated leucine, valine, and lysine in the measurement of human apolipoprotein A-I and B-100 kinetics. J Lipid Res. 1990;31(9):1693–701.PubMedGoogle Scholar
  95. 95.
    Wong ATY, Chan DC, Pang J, Watts GF, Barrett PHR. Plasma apolipoprotein B-48 transport in obese men: a new tracer kinetic study in the postprandial state. J Clin Endocrinol Metab. 2014;99(1):E122–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Berthold HK, Mertens J, Birnbaum J, Brämswig S, Sudhop T, Barrett PHR, et al. Influence of simvastatin on apoB-100 secretion in non-obese subjects with mild hypercholesterolemia. Lipids. 2010;45(6):491–500.PubMedCrossRefGoogle Scholar
  97. 97.
    Berglund L, Witztum JL, Galeano NF, Khouw AS, Ginsberg HN, Ramakrishnan R. Three-fold effect of lovastatin treatment on low density lipoprotein metabolism in subjects with hyperlipidemia: increase in receptor activity, decrease in apoB production, and decrease in particle affinity for the receptor. Results from a novel triple-tracer approach. J Lipid Res. 1998;39(4):913–24.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Parhofer KG, Barrett PHR. Thematic review series: patient-oriented research. What we have learned about VLDL and LDL metabolism from human kinetics studies. J Lipid Res. 2006;47(8):1620–30.PubMedCrossRefGoogle Scholar
  99. 99.
    Telford DE, Sutherland BG, Edwards JY, Andrews JD, Barrett PHR, Huff MW. The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin. J Lipid Res. 2007;48(3):699–708.PubMedCrossRefGoogle Scholar
  100. 100.
    Ginsberg HN. Changes in lipoprotein kinetics during therapy with fenofibrate and other fibric acid derivatives. Am J Med. 1987;83(5B):66–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Watts GF, Barrett PHR, Ji J, Serone AP, Chan DC, Croft KD, et al. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes. 2003;52(3):803–11.PubMedCrossRefGoogle Scholar
  102. 102.
    Lamon-Fava S, Diffenderfer MR, Barrett PHR, Buchsbaum A, Nyaku M, Horvath KV, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28(9):1672–8.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Parhofer KG, Hugh P, Barrett R, Bier DM, Schonfeld G. Determination of kinetic parameters of apolipoprotein B metabolism using amino acids labeled with stable isotopes. J Lipid Res. 1991;32(8):1311–23.PubMedGoogle Scholar
  104. 104.
    Reeds PJ, Hachey DL, Patterson BW, Motil KJ, Klein PD. VLDL apolipoprotein B-100, a potential indicator of the isotopic labeling of the hepatic protein synthetic precursor pool in humans: studies with multiple stable isotopically labeled amino acids. J Nutr. 1992;122(3):457–66.PubMedCrossRefGoogle Scholar
  105. 105.
    Bilheimer DW, Grundy SM, Brown MS, Goldstein JL. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci U S A. 1983;80(13):4124–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Reyes-Soffer G, Moon B, Hernandez-Ono A, Dionizovik-Dimanovski M, Dionizovick-Dimanovski M, Jimenez J, et al. Complex effects of inhibiting hepatic apolipoprotein B100 synthesis in humans. Sci Transl Med. 2016;8(323):323ra12.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Huff MW, Hegele RA. Apolipoprotein C-III: going back to the future for a lipid drug target. Circ Res. 2013;112(11):1405–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Graham MJ, Lee RG, Bell TA, Fu W, Mullick AE, Alexander VJ, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112(11):1479–90.PubMedCrossRefGoogle Scholar
  109. 109.
    Hellerstein M, Evans W. Recent advances for measurement of protein synthesis rates, use of the “virtual biopsy” approach, and measurement of muscle mass. Curr Opin Clin Nutr Metab Care. 2017;20(3):191–200.PubMedCrossRefGoogle Scholar
  110. 110.
    Stimpson SA, Leonard MS, Clifton LG, Poole JC, Turner SM, Shearer TW, et al. Longitudinal changes in total body creatine pool size and skeletal muscle mass using the D3-creatine dilution method. J Cachexia Sarcopenia Muscle. 2013;4(3):217–23.PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, et al. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol. 2014;116(12):1605–13.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shankaran M, King CL, Angel TE, Holmes WE, Li KW, Colangelo M, et al. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. J Clin Invest. 2016;126(1):288–302.PubMedCrossRefGoogle Scholar
  113. 113.
    Shankaran M, Shearer TW, Stimpson SA, Turner SM, King C, Wong P-YA, et al. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats. Am J Physiol Endocrinol Metab. 2016;310(6):E405–17.PubMedCrossRefGoogle Scholar
  114. 114.
    Decaris ML, Li KW, Emson CL, Gatmaitan M, Liu S, Wang Y, et al. Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood. Hepatology. 2017;65(1):78–88.PubMedCrossRefGoogle Scholar
  115. 115.
    Turner S, Holmes W, Czerwieniec G, Tsang E, Dalidd M, Chen M, et al. Abstract 587: dynamics of the apolipoproteome: turnover of HDL- and LDL-associated apolipoproteins by LC/MS/MS. Arterioscler Thromb Vasc Biol. 2014;34(Suppl 1):A587.Google Scholar
  116. 116.
    Croyal M, Fall F, Ferchaud-Roucher V, Chétiveaux M, Zaïr Y, Ouguerram K, et al. Multiplexed peptide analysis for kinetic measurements of major human apolipoproteins by LC/MS/MS. J Lipid Res. 2016;57(3):509–15.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Heinecke JW. The HDL proteome: a marker – and perhaps mediator – of coronary artery disease. J Lipid Res. 2009;50(Suppl):S167–71.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117(3):746–56.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54(10):2575–85.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carine Beysen
    • 1
    Email author
  • Thomas E. Angel
    • 2
  • Marc K. Hellerstein
    • 3
  • Scott M. Turner
    • 4
  1. 1.ProScientoChula VistaUSA
  2. 2.GlaxoSmithKlineKing of PrussiaUSA
  3. 3.University of California BerkeleyBerkeleyUSA
  4. 4.Pliant TherapeuticsSouth San FranciscoUSA

Personalised recommendations