Pharmacokinetic and Pharmacodynamic Assessment of Novel and Biosimilar Insulins

  • Andrew J. KrentzEmail author
  • Christian Weyer
  • Marcus Hompesch


Technological advances in insulin therapy have resulted in a wide and ever-expanding range of rapid-acting and long-duration insulins. Development of novel insulins is founded on considerations of pharmacokinetics and pharmacodynamics. Demonstration of clinical safety and efficacy is required as a novel insulin progresses from preclinical to clinical development. The euglycemic clamp technique is the method of choice for determining time-action profiles of new insulins. Data from glucose clamp studies are required by regulatory authorities. Regulatory requirements for approval of biosimilar insulins include rigorous evaluation of the pharmacodynamic and immunogenic properties of these insulins; the euglycemic clamp is central to pharmacodynamic evaluation of biosimilar insulins.


Insulin Pharmacokinetics Pharmacodynamics Euglycemic clamp Insulin time-action profiles Insulin analogs Biosimilar insulins 


  1. 1.
    Owens DR, Matfin G, Monnier L. Basal insulin analogues in the management of diabetes mellitus: what progress have we made? Diabetes Metab Res Rev. 2014;30(2):104–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Home PD. Plasma insulin profiles after subcutaneous injection: how close can we get to physiology in people with diabetes? Diabetes Obes Metab. 2015;17(11):1011–20.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mathieu C, Gillard P, Benhalima K. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat Rev Endocrinol. 2017;13(7):385–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Vajo Z, Fawcett J, Duckworth WC. Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev. 2001;22(5):706–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirsch IB. Intensifying insulin therapy in patients with type 2 diabetes mellitus. Am J Med. 2005;118(Suppl 5A):21S–6S.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Switzer SM, Moser EG, Rockler BE, Garg SK. Intensive insulin therapy in patients with type 1 diabetes mellitus. Endocrinol Metab Clin N Am. 2012;41(1):89–104.CrossRefGoogle Scholar
  7. 7.
    Owens DR. Stepwise intensification of insulin therapy in type 2 diabetes management--exploring the concept of the basal-plus approach in clinical practice. Diabet Med. 2013;30(3):276–88.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Riddle MC. Learning about new therapies: phase 3 clinical studies--and beyond. Diabetes Care. 2013;36(9):2453–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wronkowitz N, Hartmann T, Gorgens SW, et al. (LAPS) Insulin115: a novel ultra-long-acting basal insulin with a unique action profile. Diabetes Obes Metab. 2017;19(12):1722–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Heller S. Weight gain during insulin therapy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2004;65(Suppl 1):S23–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Heller SR, Frier BM, Herslov ML, Gundgaard J, Gough SC. Severe hypoglycaemia in adults with insulin-treated diabetes: impact on healthcare resources. Diabet Med. 2016;33(4):471–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Herman ME, O’Keefe JH, Bell DSH, Schwartz SS. Insulin therapy increases cardiovascular risk in type 2 diabetes. Prog Cardiovasc Dis. 2017;60:422–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Davies MJ, Gagliardino JJ, Gray LJ, et al. Real-world factors affecting adherence to insulin therapy in patients with Type 1 or Type 2 diabetes mellitus: a systematic review. Diabet Med. 2013;30(5):512–24.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Polonsky WH, Arsenault J, Fisher L, et al. Initiating insulin: how to help people with type 2 diabetes start and continue insulin successfully. Int J Clin Pract. 2017;71(8):e12973.PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Heinemann L, Home PD, Hompesch M. Biosimilar insulins: guidance for data interpretation by clinicians and users. Diabetes Obes Metab. 2015;17(10):911–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Peters AL, Pollom RD, Zielonka JS, Carey MA, Edelman SV. Biosimilars and new insulin versions. Endocr Pract. 2015;21(12):1387–94.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bliss M. The history of insulin. Diabetes Care. 1993;16(Suppl 3):4–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Evans A, Krentz AJ. Benefits and risks of transfer from oral agents to insulin in type 2 diabetes mellitus. Drug Saf. 1999;21(1):7–22.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Riddle MC, Yuen KC. Reevaluating goals of insulin therapy: perspectives from large clinical trials. Endocrinol Metab Clin N Am. 2012;41(1):41–56.CrossRefGoogle Scholar
  20. 20.
    U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes. 1995;44(11):1249–58.CrossRefGoogle Scholar
  21. 21.
    Home P, Riddle M, Cefalu WT, et al. Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care. 2014;37(6):1499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Thabit H, Hovorka R. Closed-loop insulin delivery in type 1 diabetes. Endocrinol Metab Clin N Am. 2012;41(1):105–17.CrossRefGoogle Scholar
  23. 23.
    Thabit H, Hovorka R. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia. 2016;59(9):1795–805.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Peters TM, Haidar A. Dual-hormone artificial pancreas: benefits and limitations compared with single-hormone systems. Diabet Med. 2018;35:450–9.PubMedCrossRefGoogle Scholar
  25. 25.
    George P, McCrimmon RJ. Potential role of non-insulin adjunct therapy in Type 1 diabetes. Diabet Med. 2013;30(2):179–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Petrie JR, Chaturvedi N, Ford I, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5:597–609.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    El Masri D, Ghosh S, Jaber LA. Safety and efficacy of sodium-glucose cotransporter 2 (SGLT2) inhibitors in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;137:83–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Garber AJ, Abrahamson MJ, Barzilay JI, et al. AACE comprehensive diabetes management algorithm 2013. Endocr Pract. 2013;19(2):327–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Ahren B. Insulin plus incretin: a glucose-lowering strategy for type 2-diabetes. World J Diabetes. 2014;5(1):40–51.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Heller SR. Hypoglycaemia in Type 2 diabetes. Diabetes Res Clin Pract. 2008;82(Suppl 2):S108–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Reutrakul S, Wroblewski K, Brown RL. Clinical use of U-500 regular insulin: review and meta-analysis. J Diabetes Sci Technol. 2012;6(2):412–20.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    de la Pena A, Riddle M, Morrow LA, et al. Pharmacokinetics and pharmacodynamics of high-dose human regular U-500 insulin versus human regular U-100 insulin in healthy obese subjects. Diabetes Care. 2011;34(12):2496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Home PD. The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences. Diabetes Obes Metab. 2012;14(9):780–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Sheldon B, Russell-Jones D, Wright J. Insulin analogues: an example of applied medical science. Diabetes Obes Metab. 2009;11(1):5–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Simpson KL, Spencer CM. Insulin aspart. Drugs. 1999;57(5):759–65.. discussion 766-7PubMedCrossRefGoogle Scholar
  37. 37.
    Heller SR. Insulin analogues. Curr Med Res Opin. 2002;18(Suppl 1):s40–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Biester T, Kordonouri O, Danne T. Pharmacological properties of faster-acting insulin aspart. Curr Diab Rep. 2017;17(11):101.PubMedCrossRefGoogle Scholar
  39. 39.
    Heinemann L. New ways of insulin delivery. Int J Clin Pract Suppl. 2011;65(170):31–46.CrossRefGoogle Scholar
  40. 40.
    Boss AH, Petrucci R, Lorber D. Coverage of prandial insulin requirements by means of an ultra-rapid-acting inhaled insulin. J Diabetes Sci Technol. 2012;6(4):773–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    FDA approves Afrezza to treat diabetes; Cited June 2014. Available from:
  42. 42.
    Schmidt KE, Tong J. Measurements of effects of hyaluronidase in insulin coma treatment. J Ment Sci. 1958;104(437):1136–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Morrow L, Muchmore DB, Hompesch M, Ludington EA, Vaughn DE. Comparative pharmacokinetics and insulin action for three rapid-acting insulin analogs injected subcutaneously with and without hyaluronidase. Diabetes Care. 2013;36(2):273–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hompesch M, Muchmore DB, Morrow L, Vaughn DE. Accelerated insulin pharmacokinetics and improved postprandial glycemic control in patients with type 1 diabetes after coadministration of prandial insulins with hyaluronidase. Diabetes Care. 2011;34(3):666–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hompesch M, Muchmore DB, Morrow L, Ludington E, Vaughn DE. Improved postprandial glycemic control in patients with type 2 diabetes from subcutaneous injection of insulin lispro with hyaluronidase. Diabetes Technol Ther. 2012;14(3):218–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Muchmore DB, Vaughn DE. Accelerating and improving the consistency of rapid-acting analog insulin absorption and action for both subcutaneous injection and continuous subcutaneous infusion using recombinant human hyaluronidase. J Diabetes Sci Technol. 2012;6(4):764–72.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Morrow L, Muchmore DB, Ludington EA, Vaughn DE, Hompesch M. Reduction in intrasubject variability in the pharmacokinetic response to insulin after subcutaneous co-administration with recombinant human hyaluronidase in healthy volunteers. Diabetes Technol Ther. 2011;13(10):1039–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Krasner A, Pohl R, Simms P, et al. A review of a family of ultra-rapid-acting insulins: formulation development. J Diabetes Sci Technol. 2012;6(4):786–96.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Fonte P, Araujo F, Reis S, Sarmento B. Oral insulin delivery: how far are we? J Diabetes Sci Technol. 2013;7(2):520–31.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Arbit E, Kidron M. Oral insulin delivery in a physiologic context: review. J Diabetes Sci Technol. 2017;11(4):825–32.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lepore M, Pampanelli S, Fanelli C, et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes. 2000;49(12):2142–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Gough SC, Harris S, Woo V, Davies M. Insulin degludec: overview of a novel ultra long-acting basal insulin. Diabetes Obes Metab. 2013;15(4):301–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Lamos EM, Younk LM, Davis SN. Concentrated insulins: the new basal insulins. Ther Clin Risk Manag. 2016;12:389–400.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Standl E, Owen DR. New long-acting basal Insulins: does benefit outweigh cost? Diabetes Care. 2016;39(Suppl 2):S172–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Hilgenfeld R. The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs. 2014;74:911–27.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zinman B. Newer insulin analogs: advances in basal insulin replacement. Diabetes Obes Metab. 2013;15(Suppl 1):6–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Meneghini L, Atkin SL, Gough SC, et al. The efficacy and safety of insulin degludec given in variable once-daily dosing intervals compared with insulin glargine and insulin degludec dosed at the same time daily: a 26-week, randomized, open-label, parallel-group, treat-to-target trial in individuals with type 2 diabetes. Diabetes Care. 2013;36(4):858–64.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bergenstal RM, Rosenstock J, Arakaki RF, et al. A randomized, controlled study of once-daily LY2605541, a novel long-acting basal insulin, versus insulin glargine in basal insulin-treated patients with type 2 diabetes. Diabetes Care. 2012;35(11):2140–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Heinemann L, Linkeschova R, Rave K, et al. Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care. 2000;23(5):644–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Scholtz HE, Pretorius SG, Wessels DH, Becker RH. Pharmacokinetic and glucodynamic variability: assessment of insulin glargine, NPH insulin and insulin ultralente in healthy volunteers using a euglycaemic clamp technique. Diabetologia. 2005;48(10):1988–95.PubMedCrossRefGoogle Scholar
  61. 61.
    Riddle MC, Rosenstock J, Gerich J. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26(11):3080–6.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ratner RE, Hirsch IB, Neifing JL, et al. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. U.S. Study Group of Insulin Glargine in Type 1 Diabetes. Diabetes Care. 2000;23(5):639–43.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Heise T, Nosek L, Ronn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes. 2004;53(6):1614–20.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Swinnen SG, Simon AC, Holleman F, Hoekstra JB, Devries JH. Insulin detemir versus insulin glargine for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;7:CD006383.Google Scholar
  65. 65.
    Klein O, Lynge J, Endahl L, et al. Albumin-bound basal insulin analogues (insulin detemir and NN344): comparable time-action profiles but less variability than insulin glargine in type 2 diabetes. Diabetes Obes Metab. 2007;9(3):290–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Porcellati F, Rossetti P, Busciantella NR, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care. 2007;30(10):2447–52.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Koehler G, Treiber G, Wutte A, et al. Pharmacodynamics of the long-acting insulin analogues detemir and glargine following single-doses and under steady-state conditions in patients with type 1 diabetes. Diabetes Obes Metab. 2014;16(1):57–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Becker RH, Dahmen R, Bergmann K, et al. New insulin glargine 300 Units. mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 Units. mL-1. Diabetes Care. 2015;38(4):637–43.PubMedGoogle Scholar
  69. 69.
    Hompesch M, Morrow L, Watkins E, et al. Pharmacokinetic and Pharmacodynamic Responses of Insulin Degludec in African American, White, and Hispanic/Latino Patients With Type 2 Diabetes Mellitus. Clin Ther. 2014;36:507–15.PubMedCrossRefGoogle Scholar
  70. 70.
    Owens DR. Pharmacokinetics and pharmacodynamics of insulin glargine 300 U/mL in the treatment of diabetes and their clinical relevance. Expert Opin Drug Metab Toxicol. 2016;12(8):977–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Ostergaard L, Frandsen CS, Dejgaard TF, Madsbad S. Fixed-ratio combination therapy with GLP-1 receptor agonist liraglutide and insulin degludec in people with type 2 diabetes. Expert Rev Clin Pharmacol. 2017;10(6):621–32.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Scott LJ. Insulin Glargine/Lixisenatide: a review in type 2 diabetes. Drugs. 2017;77(12):1353–62.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ocheltree SM, Hompesch M, Wondmagegnehu ET, et al. Comparison of pharmacodynamic intrasubject variability of insulin lispro protamine suspension and insulin glargine in subjects with type 1 diabetes. Eur J Endocrinol. 2010;163(2):217–23.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hwang SY, Choi IY, Kim YK, Jung SY, Kim DJ, Lee YM, Trautmann M, Hompesch M, Son YW, Kwon SC. A novel very long-acting insulin analog (HM12470) with potential for once-weekly dosing, has a favorable PK, PD and mitogenic profile. San Francisco: American Diabetes Association 74th Scientific Sessions; 2014. p. 89-LB.Google Scholar
  75. 75.
    Roberts BK, Wang X, Rosendahl MS, Mantripragada S. The in vitro and in vivo pharmacology of AB101, a potential once-weekly basal subcutaneous insulin. Boston: American Diabetes Association 75th Scientific Sessions; 2015.Google Scholar
  76. 76.
    Roberts BK, Wang X, Rosendahl M, Mantriprigada S. The extended duration single dose pharmacokinetics (PK) and pharmacodynamics (PD) of AB101, a potential once weekly basal subcutaneous (SC) Insulin, in diabetic miniature swine. New Orleans: 76th American Diabetes Association Scientific Sessions; 2016.. p. 955-PGoogle Scholar
  77. 77.
    Pandyarajan V, Weiss MA. Design of non-standard insulin analogs for the treatment of diabetes mellitus. Curr Diab Rep. 2012;12(6):697–704.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rege NK, Phillips NFB, Weiss MA. Development of glucose-responsive ‘smart’ insulin systems. Curr Opin Endocrinol Diabetes Obes. 2017;24(4):267–78.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bakh NA, Cortinas AB, Weiss MA, et al. Glucose-responsive insulin by molecular and physical design. Nat Chem. 2017;9(10):937–43.PubMedCrossRefGoogle Scholar
  80. 80.
    Heinemann L, Anderson JH Jr. Measurement of insulin absorption and insulin action. Diabetes Technol Ther. 2004;6(5):698–718.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kang S, Brange J, Burch A, Volund A, Owens DR. Absorption kinetics and action profiles of subcutaneously administered insulin analogues (AspB9GluB27, AspB10, AspB28) in healthy subjects. Diabetes Care. 1991;14(11):1057–65.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Vora JP, Burch A, Peters JR, Owens DR. Relationship between absorption of radiolabeled soluble insulin, subcutaneous blood flow, and anthropometry. Diabetes Care. 1992;15(11):1484–93.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Luzio SD, Beck P, Owens DR. Comparison of the subcutaneous absorption of insulin glargine (Lantus) and NPH insulin in patients with Type 2 diabetes. Horm Metab Res. 2003;35(7):434–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Peter R, Luzio SD, Dunseath G, et al. Effects of exercise on the absorption of insulin glargine in patients with type 1 diabetes. Diabetes Care. 2005;28(3):560–5.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Weinges K, Ehrhardt M, Enzmann F. Comparison of biosynthetic human insulin and pork insulin in the Gerritzen test. Diabetes Care. 1981;4(2):180–2.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Davidson MB, Navar MD, Echeverry D, Duran P. U-500 regular insulin: clinical experience and pharmacokinetics in obese, severely insulin-resistant type 2 diabetic patients. Diabetes Care. 2010;33(2):281–3.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Porcellati F, Lucidi P, Bolli GB, Fanelli CG. How to accurately establish pharmacokinetics/pharmacodynamics of long-acting Insulins in humans: relevance to biosimilar Insulins. Diabetes Care. 2015;38(12):2237–40.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Home P. Pharmacokinetics and pharmacodynamics of biosimilar Insulins: is clamp technology fit for purpose? Diabetes Care. 2015;38(12):2234–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ampudia-Blasco FJ, Heinemann L, Bender R, et al. Comparative dose-related time-action profiles of glibenclamide and a new non-sulphonylurea drug, AG-EE 623 ZW, during euglycaemic clamp in healthy subjects. Diabetologia. 1994;37(7):703–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Massi-Benedetti M, Burrin JM, Capaldo B, Alberti KG. A comparative study of the activity of biosynthetic human insulin and pork insulin using the glucose clamp technique in normal subjects. Diabetes Care. 1981;4(2):163–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Wolzt M, de la Pena A, Berclaz PY, et al. AIR inhaled insulin versus subcutaneous insulin: pharmacokinetics, glucodynamics, and pulmonary function in asthma. Diabetes Care. 2008;31(4):735–40.PubMedCrossRefGoogle Scholar
  92. 92.
    The European Agency for the Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products: Note on guidance on clinical investigation of medicinal products in the treatment of diabetes mellitus. Londons; 2002.Google Scholar
  93. 93.
    U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. Guidance for industry. Diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention; 2008.Google Scholar
  94. 94.
    Hompesch M, Rave K. An analysis of how to measurement glucose during glucose clamps: are glucose meters ready for research? J Diabetes Sci Technol. 2008;2(5):896–8.Google Scholar
  95. 95.
    Staehr P, Hother-Nielsen O, Levin K, Holst JJ, Beck-Nielsen H. Assessment of hepatic insulin action in obese type 2 diabetic patients. Diabetes. 2001;50(6):1363–70.PubMedCrossRefGoogle Scholar
  96. 96.
    Swinnen SG, Holleman F, DeVries JH. The interpretation of glucose clamp studies of long-acting insulin analogues: from physiology to marketing and back. Diabetologia. 2008;51(10):1790–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Clemens AH, Hough DL, D’Orazio PA. Development of the Biostator Glucose clamping algorithm. Clin Chem. 1982;28(9):1899–904.PubMedGoogle Scholar
  98. 98.
    Heinemann L, Ampudia-Blasco FJ. Glucose clamps with the Biostator: a critical reappraisal. Horm Metab Res. 1994;26(12):579–83.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Crutchlow MF, Palcza JS, Mostoller KM, et al. Single-dose euglycaemic clamp studies demonstrating pharmacokinetic and pharmacodynamic similarity between MK-1293 insulin glargine and originator insulin glargine (Lantus) in subjects with type 1 diabetes and healthy subjects. Diabetes Obes Metab. 2018;20(2):400–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Owen WE, Roberts WL. Cross-reactivity of three recombinant insulin analogs with five commercial insulin immunoassays. Clin Chem. 2004;50(1):257–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Hanning I, Home PD, Alberti KG. Measurement of free insulin concentrations: the influence of the timing of extraction of insulin antibodies. Diabetologia. 1985;28(11):831–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Becker RHA. In response to: Heise T, Norskov M, Nosek L, Kaplan K, Famulla S and Haahr H. L. (2017) Insulin degludec: Lower day-to-day and within-day variability in pharmacodynamic response compared to insulin glargine U300 in type 1 diabetes. Diabetes Obes Metab. 2017;19:1032–9. Diabetes Obes Metab, 2018CrossRefGoogle Scholar
  103. 103.
    Heise T, Heckermann S, DeVries JH. Variability of insulin degludec and glargine U300: a matter of methodology or just marketing? Diabetes Obes Metab. 2018;20:2051–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Heise T, Norskov M, Nosek L, et al. Insulin degludec: lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes Obes Metab. 2017;19(7):1032–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bailey TS, Pettus J, Roussel R, et al. Morning administration of 0.4U/kg/day insulin glargine 300U/mL provides less fluctuating 24-hour pharmacodynamics and more even pharmacokinetic profiles compared with insulin degludec 100U/mL in type 1 diabetes. Diabetes Metab. 2018;44(1):15–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Hompesch M, Patel D, La Salle JR, Bolli GB. Pharmacokinetic and pharmacodynamic of new generation, longer-acting basal insulins: potential implications for clinical practice in type 2 diabetes. Postgrad Med. 2018.
  107. 107.
  108. 108.
    Home PD, Bergenstal RM, Bolli GB, et al. New Insulin Glargine 300 Units/mL Versus Glargine 100 Units/mL in People With Type 1 Diabetes: A Randomized, Phase 3a, Open-Label Clinical Trial (EDITION 4). Diabetes Care. 2015;38(12):2217–25.PubMedCrossRefGoogle Scholar
  109. 109.
    Wang F, Zassman S, Goldberg PA. rDNA insulin glargine U300 – a critical appraisal. Diabetes Metab Syndr Obes. 2016;9:425–41.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wang L, Lovejoy NF, Faustman DL. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care. 2012;35(3):465–70.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Oram RA, Jones AG, Besser RE, et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 2014;57(1):187–91.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Greenbaum CJ, Mandrup-Poulsen T, McGee PF, et al. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care. 2008;31(10):1966–71.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zangeneh F, Arora PS, Dyck PJ, et al. Effects of duration of type 2 diabetes mellitus on insulin secretion. Endocr Pract. 2006;12(4):388–93.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes. 1989;38(12):1512–27.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hompesch M, Kang J, Morrow L, Yun N, Kwon S, Lim CG, Trautmanm M, Krentz AJ, Win K, Chapel S, Son J. The ultra-long-acting insulin HM12460A demonstrates safety and efficacy in patients with type 1 diabetes: a phase 1 single dose explorative glucose clamp study. Diabetes. 2014;63(Suppl 1):A229.Google Scholar
  116. 116.
    Hompesch M, Kang J, Morrow L, Yun N, Yi J, Kwon SC, Lim CK, Trautmanm M, Krentz AJ, Win K, Chapel S, Son J. The ultra-long-acting insulin HM12460A demonstrates safety and efficacy in patients with type 2 diabetes: a phase 1 single dose explorative glucose clamp study. Diabetes. 2014;63(suppl 1):A229.Google Scholar
  117. 117.
    Benesch C, Heise T, Klein O, Heinemann L, Arnolds S. How to Assess the Quality of Glucose Clamps? Evaluation of Clamps Performed With ClampArt, a Novel Automated Clamp Device. J Diabetes Sci Technol. 2015;9(4):792–800.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lutz SZ, Hennenlotter J, Scharpf MO, et al. Androgen receptor overexpression in prostate cancer in type 2 diabetes. Mol Metab. 2018;8:158–66.PubMedCrossRefGoogle Scholar
  119. 119.
    Krentz AJ, Hompesch M. Cardiovascular safety of new drugs for diabetes: getting the balance right? Pharm Med. 2014;28:109–17.CrossRefGoogle Scholar
  120. 120.
    Marso SP, McGuire DK, Zinman B, et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med. 2017;377(8):723–32.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer – systematic review and meta-analysis of observational studies. Curr Drug Saf. 2013;8(5):333–48.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Sciacca L, Cassarino MF, Genua M, et al. Insulin analogues differently activate insulin receptor isoforms and post-receptor signalling. Diabetologia. 2010;53(8):1743–53.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Investigators OT, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.CrossRefGoogle Scholar
  124. 124.
    Bordeleau L, Yakubovich N, Dagenais GR, et al. The association of basal insulin glargine and/or n-3 fatty acids with incident cancers in patients with dysglycemia. Diabetes Care. 2014;37:1360–6.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Madsbad S. LY2605541--a preferential Hepato-specific insulin analogue. Diabetes. 2014;63(2):390–2.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Jacober SJ, Prince MJ, Beals JM, et al. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18 Suppl 2:3–16.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Munoz-Garach A, Molina-Vega M, Tinahones FJ. How can a good idea fail? Basal insulin Peglispro [LY2605541] for the treatment of type 2 diabetes. Diabetes Ther. 2017;8(1):9–22.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Heinemann L, Hompesch M. Biosimilar Insulins: basic considerations. J Diabetes Sci Technol. 2014;8(1):6–13.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kramer I, Sauer T. The new world of biosimilars: what diabetologists need to know about biosimilar insulins. Br J Diabetes Vasc Dis. 2010;10:163–71.CrossRefGoogle Scholar
  130. 130.
    Heinemann L, Hompesch M. Biosimilar insulins: how similar is similar? J Diabetes Sci Technol. 2011;5(3):741–54.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Owens DR, Landgraf W, Schmidt A, Bretzel RG, Kuhlmann MK. The emergence of biosimilar insulin preparations--a cause for concern? Diabetes Technol Ther. 2012;14(11):989–96.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    DeVries JH, Gough SC, Kiljanski J, Heinemann L. Biosimilar insulins: a European perspective. Diabetes Obes Metab. 2015;17(5):445–51.PubMedCrossRefGoogle Scholar
  133. 133.
    European Medicines Agency. Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues; July 2nd 2015. Available from:
  134. 134.
    European Medicines Agency. Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues (draft); 2014. Available from:
  135. 135.
    Heinemann L, Khatami H, McKinnon R, Home P. An overview of current regulatory requirements for approval of biosimilar Insulins. Diabetes Technol Ther. 2015;17(7):510–26.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kuhlmann M, Marre M. Lessons learned from biosimilar epoetins and insulins. Br J Diabetes Vasc Dis. 2010;10:90–7.CrossRefGoogle Scholar
  137. 137.
    Wang J, Chow SC. On the regulatory approval pathway of biosimilar products. Pharmaceuticals (Basel). 2012;5(4):353–68.CrossRefGoogle Scholar
  138. 138.
    Approval of biosimilars in the USA--dead ringers? Lancet. 2012;379(9817):686.Google Scholar
  139. 139.
    US Food and Drug Administration. Guidance for industry. Scientific considerations in demonstrating biosimilarity to a reference product; 2012. Available from:
  140. 140.
    Heise T, Hermanski L, Nosek L, et al. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab. 2012;14(9):859–64.PubMedCrossRefGoogle Scholar
  141. 141.
    Hilgenfeld R, Seipke G, Berchtold H, Owens DR. The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs. 2014;74(8):911–27.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrew J. Krentz
    • 1
    Email author
  • Christian Weyer
    • 1
  • Marcus Hompesch
    • 1
  1. 1.ProScientoChula VistaUSA

Personalised recommendations