Early Phase Metabolic Research with Reference to Special Populations

  • Linda A. MorrowEmail author
  • Andrew J. Krentz


Well-designed and expertly executed early phase clinical trials can provide valuable information that may accelerate ‘go, no go’ decisions, potentially shortening the time of access to new, more efficacious treatments. While first-in-human studies had conventionally been performed in healthy volunteers, more recently there has been acceptance of the use of patients with the disease of interest. In the context of developing new drugs for the treatment of diabetes, obesity, and nonalcoholic steatohepatitis (NASH), this paradigm shift requires consideration of the risks, benefits, and practical challenges of studying patients with obesity, nonalcoholic fatty liver disease (NAFLD), glucose intolerance, type 1 diabetes, and type 2 diabetes. Within these disorders, issues of renal impairment, impaired liver function tests, the metabolic syndrome, and cognitive impairment demand additional consideration. In addition, safe and ethical inclusion of patients with special characteristics, e.g. the pediatric and adolescent age groups, older subjects, and women of childbearing potential, in early phase studies mandates specific risk management strategies. Access to these patient populations and rapid identification of potential volunteers for trials remain critical factors for successful early drug development.


Early phase clinical trials Obesity Cardiovascular disease Fatty liver disease Diabetic nephropathy Type 1 diabetes Type 2 diabetes Impaired glucose tolerance Older people Women of childbearing potential Diabetes in childhood 


  1. 1.
    Hornblum AM, Newman JL, Dober GJ. Against their will: the secret history of medical experimentation on children in cold war America. New York: Palgrave Macmillan; 1997.Google Scholar
  2. 2.
    Pellegrino ED. The Nazi doctors and Nuremberg: some moral lessons revisited. Ann Intern Med. 1997;127(4):307–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Resnick DB. Research ethics timeline (1932–present). Available from:
  4. 4.
    WMA Declaration of Helsinki – ethical principles for medical research involving human subjects. 2014. Available from: Accessed 10 June 2014.
  5. 5.
    Belmont report: ethical principles and guidelines for the protection of human subjects of research, report of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. Available from:
  6. 6.
    International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Available from:
  7. 7.
    Markman M. The ethical dilemma of phase I clinical trials. CA Cancer J Clin. 1986;36(6):367–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Dresser R. First-in-human trial participants: not a vulnerable population, but vulnerable nonetheless. J Law Med Ethics. 2009;37(1):38–50.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Ivy SP, Siu LL, Garrett-Mayer E, Rubinstein L. Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: a report from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin Cancer Res. 2010;16(6):1726–36.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Krentz AJ, Morrow L, Hompesch M. Developing new drugs for diabetes and cardiometabolic disorders: a changing paradigm. Drugs. 2012;72(13):1709–11.PubMedCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995 Apr 1;122(7):481–6.PubMedCrossRefGoogle Scholar
  15. 15.
    WHO/IASO/IOTF. The Asia-Pacific perspective: redefining obesity and its treatment. Melbourne: Health Communications Australia; 2000.Google Scholar
  16. 16.
    James WP, Chunming C, Inoue S. Appropriate Asian body mass indices? Obes Rev. 2002;3(3):139.PubMedCrossRefGoogle Scholar
  17. 17.
    Blouin RA, Warren GW. Pharmacokinetic considerations in obesity. J Pharm Sci. 1999;88(1):1–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Morello CM. Pharmacokinetics and pharmacodynamics of insulin analogs in special populations with type 2 diabetes mellitus. Int J Gen Med. 2011;4:827–35.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Barnett AH. How well do rapid-acting insulins work in obese individuals? Diabetes Obes Metab. 2006;8(4):388–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang Y, Kim BK, Yun KE, Cho J, Zhang Y, Rampal S, et al. Metabolically healthy obesity and coronary artery calcification. J Am Coll Cardiol. 2014;63:2679–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Bluher M. The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol. 2010;21(1):38–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Karelis AD. To be obese – does it matter if you are metabolically healthy? Nat Rev Endocrinol. 2011;7(12):699–700.PubMedCrossRefGoogle Scholar
  23. 23.
    Karelis AD, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30(6):569–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012;97(7):2482–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chow SC, Chang M. Adaptive design methods in clinical trials – a review. Orphanet J Rare Dis. 2008;3:11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ma Y, Bertone ER, Stanek EJ 3rd, Reed GW, Hebert JR, Cohen NL, et al. Association between eating patterns and obesity in a free-living US adult population. Am J Epidemiol. 2003;158(1):85–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Herman CP, Roth DA, Polivy J. Effects of the presence of others on food intake: a normative interpretation. Psychol Bull. 2003;129(6):873–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Alberti KG. Impaired glucose tolerance: what are the clinical implications? Diabetes Res Clin Pract. 1998;40(Suppl):S3–8.PubMedGoogle Scholar
  30. 30.
    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.PubMedCrossRefGoogle Scholar
  31. 31.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–74.CrossRefGoogle Scholar
  32. 32.
    DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Phys. 1979;237(3):E214–23.Google Scholar
  33. 33.
    Pei D, Jones CN, Bhargava R, Chen YD, Reaven GM. Evaluation of octreotide to assess insulin-mediated glucose disposal by the insulin suppression test. Diabetologia. 1994;37(8):843–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, Booker L, Yazdi H. Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose. Evidence report/Technology Assessment No. 128. 2005. Agency for Healthcare Research and Quality. Rockville, USA.Google Scholar
  37. 37.
    Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stone MA, Camosso-Stefinovic J, Wilkinson J, de Lusignan S, Hattersley AT, Khunti K. Incorrect and incomplete coding and classification of diabetes: a systematic review. Diabet Med. 2010;27(5):491–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 2012;35(6):1206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    McDonald TJ, Colclough K, Brown R, et al. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from type 1 diabetes. Diabet Med. 2011;28(9):1028–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Zinman B, Kahn SE, Haffner SM, O’Neill MC, Heise MA, Freed MI, ADOPT Study Group. Phenotypic characteristics of GAD antibody-positive recently diagnosed patients with type 2 diabetes in North America and Europe. Diabetes. 2004;53(12):3193–200.PubMedCrossRefGoogle Scholar
  42. 42.
    Stenstrom G, Gottsater A, Bakhtadze E, Berger B, Sundkvist G. Latent autoimmune diabetes in adults: definition, prevalence, beta-cell function, and treatment. Diabetes. 2005;54(Suppl 2):S68–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med. 2013;30(7):803–17.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993;328(23):1676–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Schott R, Angeles J, Larrabee H, Humphreys C, Shott K, Morrow L, Hompesch M. Effect of discontinuing oral anti-diabetic drugs (OADs) prior to enrollment in a phase 1 trial. Clin Pharmacol Ther. 2012;91. Suppl 1:S52Google Scholar
  48. 48.
    Wald J, Bush M, Young M, O’Connor-Semmes R, Hastie P, Schibler T. Model-based approach to study fasting plasma glucose during washout of prior antidiabetic therapy. Clin Pharmacol Ther. 2008;83(Suppl 1):S79.Google Scholar
  49. 49.
    Food and Drug Administration. Guidance for industry. Diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention. 2008. Accessed 1 June 2014.
  50. 50.
    Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens. 1993;11(3):309–17.Google Scholar
  52. 52.
    Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327–38.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.PubMedCrossRefGoogle Scholar
  54. 54.
    Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5(3):150–9.PubMedGoogle Scholar
  55. 55.
    Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(9):2969–89.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos. 2006;34(1):191–7.PubMedCrossRefGoogle Scholar
  57. 57.
  58. 58.
    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.PubMedCrossRefGoogle Scholar
  59. 59.
    Dai W, Ye L, Liu A, et al. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a meta-analysis. Medicine. 2017;96(39):e8179. Scholar
  60. 60.
    Puri P, Sanyal AJ. Nonalcoholic fatty liver disease: definitions, risk factors, and workup. Clin Liver Dis. 2012;1(4):99–103.CrossRefGoogle Scholar
  61. 61.
    Polanco-Briceno S, Glass D, Stuntz M, Caze A. Awareness of nonalcoholic steatohepatitis and associated practice patterns of primary care physicians and specialists. BMC Res Notes. 2016 Dec;9(1):157.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, Fontaine H, Pol S. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and FibroTest. Hepatology. 2007;46(1):32–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Mitchell O, et al. The pathophysiology of thrombocytopenia in chronic liver disease. Hepat Med. 2016;8:39–50.. PMC. Web. 9 Apr. 2018PubMedPubMedCentralGoogle Scholar
  64. 64.
    Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: concept to treatment. J Hepatol. 2015 Apr 1;62(1):S15–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Everson GT, Martucci MA, et al. Portal-systemic shunting in patients with fibrosis or cirrhosis doe to chronic hepatitis C: the minimal model for measuring cholate clearances and shunt. Aliment Pharmacol Ther. 2007;26:401–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Wiesner R, Edwards E, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124(1):91–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52(3):581–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Narbonne H, Renacco E, Pradel V, Portugal H, Vialettes B. Can fructosamine be a surrogate for HbA(1c) in evaluating the achievement of therapeutic goals in diabetes? Diabetes Metab. 2001;27(5. Pt 1):598–603.PubMedGoogle Scholar
  70. 70.
    Koga M. Glycated albumin; clinical usefulness. Clin Chim Acta. 2014;433:96–104.PubMedCrossRefGoogle Scholar
  71. 71.
    Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care. 2003;26(6):1902–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2013;369(4):362–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Donahue RP, Abbott RD, Reed DM, Yano K. Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes. 1987;36(6):689–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Guidance for industry. E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Available from:
  75. 75.
    Darpo B. The thorough QT/QTc study 4 years after the implementation of the ICH E14 guidance. Br J Pharmacol. 2010;159(1):49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Watters K, Munro N, Feher M. QTc prolongation and diabetes therapies. Diabet Med. 2012;29(3):290–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Evans AJ, Krentz AJ. Should cisapride be avoided in patients with diabetic gastroparesis? J Diabetes Complicat. 1999;13(5–6):314–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R. Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther. 2013;138(3):470–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.Google Scholar
  80. 80.
    Krentz AJ. Rosiglitazone: trials, tribulations and termination. Drugs. 2011;71(2):123–30.PubMedGoogle Scholar
  81. 81.
    Guidance for industry. Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Available from:
  82. 82.
    Adler AI. Drugs and diabetes: understanding the new breed of cardiovascular safety trials. Lancet Diabetes Endocrinol. 2013;1(3):175–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs – insights from the rosiglitazone experience. N Engl J Med. 2013;369(14):1285–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Nissen SE. Rosiglitazone: a case of regulatory hubris. BMJ. 2013;347:f7428.PubMedCrossRefGoogle Scholar
  85. 85.
    Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus. Available from:
  86. 86.
    Joshi PH, Kalyani RR, Blumenthal RS, Donner TW. Cardiovascular effects of noninsulin, glucose-lowering agents: need for more outcomes data. Am J Cardiol. 2012;110(9 Suppl):32B–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Krentz AJ, Hompesch M. Cardiovascular safety of new drugs for diabetes: getting the balance right? Pharm Med. 2014;28:109–17.CrossRefGoogle Scholar
  88. 88.
    Kanaya AM, Grady D, Barrett-Connor E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch Intern Med. 2002;162(15):1737–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Miller TM, Gilligan S, Herlache LL, Regensteiner JG. Sex differences in cardiovascular disease risk and exercise in type 2 diabetes. J Investig Med. 2012;60(4):664–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Lyons MR, Peterson LR, McGill JB, Herrero P, Coggan AR, Saeed IM, et al. Impact of sex on the heart’s metabolic and functional responses to diabetic therapies. Am J Physiol Heart Circ Physiol. 2013;305(11):H1584–91.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Targher G, Bertolini L, Padovani R, Rodella S, Zoppini G, Pichiri I, et al. Prevalence of non-alcoholic fatty liver disease and its association with cardiovascular disease in patients with type 1 diabetes. J Hepatol. 2010;53(4):713–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Smith BW, Adams LA. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol. 2011;7(8):456–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Salmela PI, Sotaniemi EA, Niemi M, Maentausta O. Liver function tests in diabetic patients. Diabetes Care. 1984;7(3):248–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Food and Drug Administration. Guidance for industry drug-induced liver injury: premarketing clinical evaluation. 2009. Available from:…/Guidances/UCM174090.pdf.
  95. 95.
    Lewis JH. ‘Hy’s law’, the ‘Rezulin Rule’, and other predictors of severe drug-induced hepatotoxicity: putting risk-benefit into perspective. Pharmacoepidemiol Drug Saf. 2006;15(4):221–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Gosmanov AR, Wall BM, Gosmanova EO. Diagnosis and treatment of diabetic kidney disease. Am J Med Sci. 2014;347(5):406–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Karalliedde J, Viberti G. Proteinuria in diabetes: bystander or pathway to cardiorenal disease? J Am Soc Nephrol. 2010;21(12):2020–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Halimi JM. The emerging concept of chronic kidney disease without clinical proteinuria in diabetic patients. Diabetes Metab. 2012;38(4):291–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Bailey C, Day C. Diabetes therapies in renal impairment. Br J Diabetes Vasc Dis. 2012;12:167–71.CrossRefGoogle Scholar
  101. 101.
    Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care. 2001;24(6):1069–78.PubMedCrossRefGoogle Scholar
  102. 102.
    Norjavaara E, Ericsson H, Sjoberg F, Leonsson-Zachrisson M, Sjöstrand M, Morrow LA, et al. Glucokinase activators AZD6370 and AZD1656 do not affect the central counterregulatory response to hypoglycemia in healthy males. J Clin Endocrinol Metab. 2012;97(9):3319–25.PubMedCrossRefGoogle Scholar
  103. 103.
    Butler H, Korbonits M. Cannabinoids for clinicians: the rise and fall of the cannabinoid antagonists. Eur J Endocrinol. 2009;161(5):655–62.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Food and Drug Administration. Drug development and drug interactions. Updated 2011. Available from: Accessed 8 June 2014.
  105. 105.
    Food and Drug Administration. Drug development and drug interactions: table of substrates, inhibitors and inducers. Available from: Accessed 30 May 2014.
  106. 106.
    Kauh EA, Mixson LA, Shankar S, McCarthy J, Maridakis V, Morrow L, et al. Short-term metabolic effects of prednisone administration in healthy subjects. Diabetes Obes Metab. 2011;13(11):1001–7.PubMedCrossRefGoogle Scholar
  107. 107.
    White JR, Campbell RK. Dangerous and common drug interactions in patients with diabetes mellitus. Endocrinol Metab Clin N Am. 2000;29(4):789–802.CrossRefGoogle Scholar
  108. 108.
    Fonseca VA. Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin. 2010;26(3):615–29.PubMedCrossRefGoogle Scholar
  109. 109.
    International Diabetes Federation. IDF global guideline for managing older people with type 2 diabetes. Brussels: International Diabetes Federation; 2013.Google Scholar
  110. 110.
    Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol. 2003;38(8):843–53.PubMedCrossRefGoogle Scholar
  111. 111.
    Doucet J. Use of antidiabetic drugs in elderly patients. Diabetes Metab. 2005;31(Spec No 2):5S98–104.Google Scholar
  112. 112.
    Pratley RE, Gilbert M. Clinical management of elderly patients with type 2 diabetes mellitus. Postgrad Med. 2012;124(1):133–43.PubMedCrossRefGoogle Scholar
  113. 113.
    Visser PJ, Kester A, Jolles J, Verhey F. Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology. 2006;67(7):1201–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42(5):484–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Strachan MW, Reynolds RM, Marioni RE, Price JF. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol. 2011;7(2):108–14.PubMedCrossRefGoogle Scholar
  116. 116.
    Ninomiya T. Diabetes mellitus and dementia. Curr Diab Rep. 2014;14(5):487.PubMedCrossRefGoogle Scholar
  117. 117.
    Herrera AP, Snipes SA, King DW, Torres-Vigil I, Goldberg DS, Weinberg AD. Disparate inclusion of older adults in clinical trials: priorities and opportunities for policy and practice change. Am J Public Health. 2010;100(Suppl 1):S105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Aguayo-Mazzucato C, Bonner-Weir S. Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6(3):139–48.PubMedCrossRefGoogle Scholar
  119. 119.
    Copeland KC, Silverstein J, Moore KR, Prazar GE, Raymer T, Shiffman RN, et al. Management of newly diagnosed type 2 Diabetes Mellitus (T2DM) in children and adolescents. Pediatrics. 2013;131(2):364–82.PubMedCrossRefGoogle Scholar
  120. 120.
    Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep. 2014;14(8):508.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ProSciento, Inc.Chula VistaUSA

Personalised recommendations