Quantitative Approaches in Translational Cardiometabolic Research: An Overview

  • Farzaneh Maleki
  • Puneet Gaitonde
  • Shannon Miller
  • Mirjam N. Trame
  • Paul M. Coen
  • Parag Garhyan
  • Stephan SchmidtEmail author


Cardiometabolic diseases are a group of complex and highly interrelated disorders that contribute significantly to healthcare expenditures. Although substantial efforts have been made to establish controlled clinical trials for treating this group of diseases and associated comorbidities, cardiometabolic diseases are still a leading cause of death worldwide. This is in part due to an apparent disconnect between aspects of drug development and the implementation of new therapies in clinical practice. In order to bridge this gap, quantitative approaches are needed to translate the available clinical trials data into real world clinical settings. Quantitative approaches allow identification of the causes and major risk factors for the disease and establish approaches for preventing early subclinical development of these disorders as well as controlling their progression in their clinically-evident later stages. These approaches further allow for feedback of the lessons learned during the development of one drug into the development of next-in-pipeline drugs, to improve their chances to successfully make it to the market. Therefore, it is crucial to develop translation strategies for integration of available knowledge and transition of drugs from bench to bedside in order to improve the standards of cardiometabolic diseases management and treatment.


Diabetes Cardiometabolic Translational Pharmacometrics Modeling and simulation Quantitative systems pharmacology Cardiovascular Bench to bedside Drug development Personalized medicine 


  1. 1.
    Alvarez CA, Lingvay I, Vuylsteke V, Koffarnus RL, McGuire DK. Cardiovascular risk in diabetes mellitus: complication of the disease or of antihyperglycemic medications. Clin Pharmacol Ther. 2015;98(2):145–61.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Cusi K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia. 2016;59(6):1112–20.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lonardo A, Sookoian S, Pirola CJ, Targher G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metab Clin Exp. 2016;65(8):1136–50.PubMedGoogle Scholar
  4. 4.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Association AH, Association AS. Cardiovascular disease: a costly burden for America. Projections through 2035. Washington, DC: American Heart Association; 2017.Google Scholar
  6. 6.
    Faulx MD, Francis GS. Adverse drug reactions in patients with cardiovascular disease. Curr Probl Cardiol. 2008;33(12):703–68.PubMedGoogle Scholar
  7. 7.
    Lesko L, Zheng S, Schmidt S. Systems approaches in risk assessment. Clin Pharmacol Ther. 2013;93(5):413–24.PubMedGoogle Scholar
  8. 8.
    Kohner EM, Aldington SJ, Stratton IM, Manley SE, Holman RR, Matthews DR, et al. United Kingdom Prospective Diabetes Study, 30: diabetic retinopathy at diagnosis of non–insulin-dependent diabetes mellitus and associated risk factors. Arch Ophthalmol. 1998;116(3):297–303.PubMedGoogle Scholar
  9. 9.
    Laakso M, Lehto S. Epidemiology of risk factors for cardiovascular disease in diabetes and impaired glucose tolerance. Atherosclerosis. 1998;137:S65–73.PubMedGoogle Scholar
  10. 10.
    Herman WH, Ye W, Griffin SJ, Simmons RK, Davies MJ, Khunti K, et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-Danish-Dutch Study of Intensive Treatment in People With Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care. 2015;38(8):1449–55.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Colburn W, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Biomarkers Definitions Working Group. Clin Pharmacol Ther. 2001;69:89–95.Google Scholar
  12. 12.
    Busch RS, Kane MP. Combination SGLT2 inhibitor and GLP-1 receptor agonist therapy: a complementary approach to the treatment of type 2 diabetes. Postgrad Med. 2017;129(7):686–97.PubMedGoogle Scholar
  13. 13.
    Page MM, Watts GF. PCSK9 in context: a contemporary review of an important biological target for the prevention and treatment of atherosclerotic cardiovascular disease. Diabetes Obes Metab. 2018;20(2):270–82.PubMedGoogle Scholar
  14. 14.
    Van der Laan AL, Boenink M. Beyond bench and bedside: disentangling the concept of translational research. Health Care Anal. 2015;23(1):32–49.PubMedGoogle Scholar
  15. 15.
    Health NIo. Definitions under subsection 1 (research objectives), section I (funding opportunity description), part II (full text of announcement). of RFA-RM-07-007: Institutional Clinical and Translational Science Award (U54). 2007. Accessed 4 Jan 2015.
  16. 16.
    Trochim W, Kane C, Graham MJ, Pincus HA. Evaluating translational research: a process marker model. Clin Transl Sci. 2011;4(3):153–62.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299(2):211–3.PubMedGoogle Scholar
  18. 18.
    Ma F-C, Lyu P-H, Yao Q, Yao L, Zhang S-J. Publication trends and knowledge maps of global translational medicine research. Scientometrics. 2014;98(1):221–46.Google Scholar
  19. 19.
    Jain R, Chung S, Jain L, Khurana M, Lau S, Lee J, et al. Implications of obesity for drug therapy: limitations and challenges. Clin Pharmacol Ther. 2011;90(1):77–89.PubMedGoogle Scholar
  20. 20.
    Health NIo. Advances and emerging opportunities in diabetes research: a strategic planning report of the Diabetes Mellitus Interagency Coordinating Committee. Bethesda: National Institutes of Health; 2011.Google Scholar
  21. 21.
    Marathe PH, Gao HX, Close KL. American Diabetes Association standards of medical care in diabetes 2017. J Diabetes. 2017;9(4):320–4.PubMedGoogle Scholar
  22. 22.
    Helmlinger G, Al-Huniti N, Aksenov S, Peskov K, Hallow K, Chu L, et al. Drug-disease modeling in the pharmaceutical industry-where mechanistic systems pharmacology and statistical pharmacometrics meet. Eur J Pharm Sci. 2017;109:S39–46.Google Scholar
  23. 23.
    Tylutki Z, Polak S, Wiśniowska B. Top-down, bottom-up and middle-out strategies for drug cardiac safety assessment via modeling and simulations. Curr Pharmacol Rep. 2016;2(4):171–7.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Collins T, Bergenholm L, Abdulla T, Yates J, Evans N, Chappell M, et al. Modeling and simulation approaches for cardiovascular function and their role in safety assessment. CPT: Pharmacometrics Syst Pharmacol. 2015;4(3):175–88.Google Scholar
  25. 25.
    Drug Disease Model Resources Foundation. DDMoRe model repository 2012–2018. Available from:
  26. 26.
    The Team at the EMBL-EBI U, the Le Novère lab at the Babraham Institute, UK, and the SBML Team in Caltech, USA. BioModels Dataset 2006–2018. Available from:
  27. 27.
    Rathee S. ODE models for the management of diabetes: a review. Int J Diabetes Dev Countries. 2017;37(1):4–15.Google Scholar
  28. 28.
    Goel P. Theoretical advances in type 2 diabetes. In: Handbook of statistics, vol. 36: Elsevier; 2017. p. 369–95.Google Scholar
  29. 29.
    Bolie VW. Coefficients of normal blood glucose regulation. J Appl Physiol. 1961;16(5):783–8.PubMedGoogle Scholar
  30. 30.
    Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Investig. 1981;68(6):1456.PubMedGoogle Scholar
  31. 31.
    Gallenberger M, Castell W, Hense BA, Kuttler C. Dynamics of glucose and insulin concentration connected to the β-cell cycle: model development and analysis. Theor Biol Med Model. 2012;9(1):46.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Luni C, Marth JD, Doyle FJ 3rd. Computational modeling of glucose transport in pancreatic beta-cells identifies metabolic thresholds and therapeutic targets in diabetes. PLoS One. 2012;7(12):e53130.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet. 2008;47(7):417–48.PubMedGoogle Scholar
  34. 34.
    Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson US, Karlsson MO. An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol. 2007;47(9):1159–71.PubMedGoogle Scholar
  35. 35.
    Jauslin PM, Silber HE, Frey N, Gieschke R, Simonsson US, Jorga K, et al. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol. 2007;47(10):1244–55.PubMedGoogle Scholar
  36. 36.
    Silber HE, Jauslin PM, Frey N, Karlsson MO. An integrated model for the glucose-insulin system. Basic Clin Pharmacol Toxicol. 2010;106(3):189–94.PubMedGoogle Scholar
  37. 37.
    Topp B, Promislow K, Devries G, Miura RM, T FINEGOOD D. A model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol. 2000;206(4):605–19.PubMedGoogle Scholar
  38. 38.
    De Gaetano A, Hardy T, Beck B, Abu-Raddad E, Palumbo P, Bue-Valleskey J, et al. Mathematical models of diabetes progression. Am J Physiol Endocrinol Metab. 2008;295(6):E1462–E79.PubMedGoogle Scholar
  39. 39.
    de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn. 2006;33(3):313–43.PubMedGoogle Scholar
  40. 40.
    Choy S, Kjellsson M, Karlsson M, de Winter W. Weight-HbA1c-insulin-glucose model for describing disease progression of type 2 diabetes. CPT: Pharmacometrics Syst Pharmacol. 2016;5(1):11–9.Google Scholar
  41. 41.
    Duong JK, Winter W, Choy S, Plock N, Naik H, Krauwinkel W, et al. The variability in beta-cell function in placebo-treated subjects with type 2 diabetes: application of the weight-HbA1c-insulin-glucose (WHIG) model. Br J Clin Pharmacol. 2017;83(3):487–97.PubMedGoogle Scholar
  42. 42.
    Eddy DM, Schlessinger L. Methods for building and validating equations for physiology-based mathematical models: glucose metabolism and type 2 diabetes in the Archimedes model. Med Decis Mak. 2016;36(3):410–21.Google Scholar
  43. 43.
    Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007;125(3):451.PubMedGoogle Scholar
  44. 44.
    Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo. 2009;23(2):245–58.PubMedGoogle Scholar
  45. 45.
    Cao Y, Gao W, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of GLP-1 in healthy rats. Pharm Res. 2012;29(4):1078–86.PubMedGoogle Scholar
  46. 46.
    Røge RM, Klim S, Ingwersen SH, Kjellsson MC, Kristensen NR. The effects of a GLP-1 analog on glucose homeostasis in type 2 diabetes mellitus quantified by an integrated glucose insulin model. CPT: Pharmacometrics Syst Pharmacol. 2015;4(1):28–36.Google Scholar
  47. 47.
    Sheikh Ghadzi SM, Karlsson MO, Kjellsson MC. Implications for drug characterization in glucose tolerance tests without insulin: simulation study of power and predictions using model-based analysis. CPT: Pharmacometrics Syst Pharmacol. 2017;6(10):686–94.Google Scholar
  48. 48.
    Gennemark P, Trägårdh M, Lindén D, Ploj K, Johansson A, Turnbull A, et al. Translational modeling to guide study design and dose choice in obesity exemplified by AZD1979, a melanin-concentrating hormone receptor 1 antagonist. CPT: Pharmacometrics Systems Pharmacol. 2017;6(7):458–68.Google Scholar
  49. 49.
    Buckley LA, Garhyan P, Ponce R, Roberts SA. Estimation of human starting dose for phase I clinical programs. In: Early drug development: strategies and routes to first-in-human trials; 2010. p. 423.Google Scholar
  50. 50.
    Alskär O, Karlsson MO, Kjellsson MC. Model-based interspecies scaling of glucose homeostasis. CPT: Pharmacometrics Syst Pharmacol. 2017;6(11):778–86.Google Scholar
  51. 51.
    Gaitonde P, Hurtado FK, Garhyan P, Chien JY, Schmidt S. Development and qualification of a drug-disease modeling platform to characterize clinically relevant endpoints in type 2 diabetes trials. Clin Pharmacol Ther. 2018;104(4):699–708.PubMedGoogle Scholar
  52. 52.
    Gross JL, Rogers J, Polhamus D, Gillespie W, Friedrich C, Gong Y, et al. A novel model-based meta-analysis to indirectly estimate the comparative efficacy of two medications: an example using DPP-4 inhibitors, sitagliptin and linagliptin, in treatment of type 2 diabetes mellitus. BMJ Open. 2013;3(3):e001844.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Li H, Xu J, Fan X. Target-mediated pharmacokinetic/pharmacodynamic model based meta-analysis and dosing regimen optimization of a long-acting release formulation of exenatide in patients with type 2 diabetes mellitus. J Pharmacol Sci. 2015;127(2):170–80.PubMedGoogle Scholar
  54. 54.
    McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care. 2005;28(2):385–90.PubMedGoogle Scholar
  55. 55.
    Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome. Diabetes Care. 2005;28(7):1769–78.PubMedGoogle Scholar
  56. 56.
    Simmons RK, Coleman RL, Price HC, Holman RR, Khaw K-T, Wareham NJ, et al. Performance of the UK prospective diabetes study risk engine and the Framingham risk equations in estimating cardiovascular disease in the EPIC-Norfolk cohort. Diabetes Care. 2009;32(4):708–13.PubMedGoogle Scholar
  57. 57.
    Bachmann KN, Wang TJ. Biomarkers of cardiovascular disease: contributions to risk prediction in individuals with diabetes. Diabetologia. 2018;61(5):987–95.Google Scholar
  58. 58.
    Eddy DM, Schlessinger L. Archimedes. Diabetes Care. 2003;26(11):3093–101.PubMedGoogle Scholar
  59. 59.
    Dziuba J, Alperin P, Racketa J, Iloeje U, Goswami D, Hardy E, et al. Modeling effects of SGLT-2 inhibitor dapagliflozin treatment versus standard diabetes therapy on cardiovascular and microvascular outcomes. Diabetes Obes Metab. 2014;16(7):628–35.PubMedGoogle Scholar
  60. 60.
    Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):419.PubMedGoogle Scholar
  61. 61.
    Ashworth WB, Davies NA, Bogle IDL. A computational model of hepatic energy metabolism: understanding zonated damage and steatosis in NAFLD. PLoS Comput Biol. 2016;12(9):e1005105.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ridderstråle M, Groop L. Genetic dissection of type 2 diabetes. Mol Cell Endocrinol. 2009;297(1):10–7.PubMedGoogle Scholar
  63. 63.
    Matharoo K, Singh Y, Sokhi J, Sharma R, Raina P, Kaur R, et al. Molecular genetics of type 2 diabetes: a review. Human Genomics and Applications. 2017. p. 179–221.Google Scholar
  64. 64.
    Avery P, Mousa SS, Mousa SA. Pharmacogenomics in type II diabetes mellitus management: steps toward personalized medicine. Pharm Pers Med. 2009;2:79.Google Scholar
  65. 65.
    Kaul N, Ali S. Genes, genetics, and environment in type 2 diabetes: implication in personalized medicine. DNA Cell Biol. 2016;35(1):1–12.PubMedGoogle Scholar
  66. 66.
    Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, Di Pietro N, et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013;310(8):821–8.PubMedGoogle Scholar
  67. 67.
    McCarthy MI. Painting a new picture of personalised medicine for diabetes. Diabetologia. 2017;60(5):793–9.PubMedGoogle Scholar
  68. 68.
    Grimes DA, Schulz KF. Making sense of odds and odds ratios. Obstet Gynecol. 2008;111(2 Pt 1):423–6.PubMedGoogle Scholar
  69. 69.
    Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry = Journal de l’Academie canadienne de psychiatrie de l’enfant et de l’adolescent. 2010;19(3):227–9.PubMedGoogle Scholar
  70. 70.
    Khoury MJ, Valdez R, Albright A. Public health genomics approach to type 2 diabetes. Diabetes. 2008;57(11):2911–4.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Delisle H. Foetal programming of nutrition-related chronic diseases. Sante (Montrouge, France). 2002;12(1):56–63.Google Scholar
  72. 72.
    Timothy F. The genetics behind type 2 diabetes - lessons from GWAS. Diabetes Voice. 2012;57(4):24.Google Scholar
  73. 73.
    Arguelles AO, Meruvu S, Bowman JD, Choudhury M. Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today. 2016;21(3):499–509.PubMedGoogle Scholar
  74. 74.
    Mould DR, Lesko LJ. Personalized medicine - integrating individual exposure response information at the bedside. New York: Springer; 2014.Google Scholar
  75. 75.
    Wilkinson MJ, Nathan AG, Huang ES. Personalized decision support in type 2 diabetes mellitus: current evidence and future directions. Curr Diab Rep. 2013;13(2):205–12.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Sim LLW, Ban KHK, Tan TW, Sethi SK, Loh TP. Development of a clinical decision support system for diabetes care: a pilot study. PLoS One. 2017;12(2):e0173021.PubMedPubMedCentralGoogle Scholar
  77. 77.
    FDA. Section 6: 510(k) summary (21 CFR 807.92(c)) – Glooko blood glucose meter and data management system. 2013.Google Scholar
  78. 78.
    Administration Usfd. Real world evidence 2018. Available from:
  79. 79.
    Chakravarthy R, Cotter K, DiMasi J, Milne C-P, Wendel N. Public-and private-sector contributions to the research and development of the most transformational drugs in the past 25 years: from theory to therapy. Ther Innov Regul Sci. 2016;50(6):759–68.PubMedGoogle Scholar
  80. 80.
    Nadeau KJ, Anderson BJ, Berg EG, Chiang JL, Chou H, Copeland KC, et al. Youth-onset type 2 diabetes consensus report: current status, challenges, and priorities. Diabetes Care. 2016;39(9):1635–42.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Weiss R, Kaufman FR. Metabolic complications of childhood obesity: identifying and mitigating the risk. Diabetes Care. 2008;31(Supplement 2):S310–S6.PubMedGoogle Scholar
  82. 82.
    Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69–80.PubMedGoogle Scholar
  83. 83.
    Council NR. Evaluation of biomarkers and surrogate endpoints in chronic disease. Washington DC: The National Academies Press; 2010.Google Scholar
  84. 84.
    Vlasakakis G, Della Pasqua O. Cardiovascular disease: the other face of diabetes. CPT: Pharmacometrics Syst Pharmacol. 2013;2(10):1–4.Google Scholar
  85. 85.
    Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J. 2013;4(1):7.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farzaneh Maleki
    • 1
  • Puneet Gaitonde
    • 2
  • Shannon Miller
    • 3
  • Mirjam N. Trame
    • 4
  • Paul M. Coen
    • 5
  • Parag Garhyan
    • 6
  • Stephan Schmidt
    • 7
    Email author
  1. 1.Department of PharmaceuticsUniversity of FloridaOrlandoUSA
  2. 2.Clinical Pharmacology, Global Product DevelopmentPfizer Inc.GrotonUSA
  3. 3.University of Florida Research and Academic CenterOrlandoUSA
  4. 4.PharmacometricsNovartis Pharma AGCambridgeUSA
  5. 5.Translational Research Institute for Metabolism and Diabetes, AdventHealthOrlandoUSA
  6. 6.Global PK/PD/Pharmacometrics, Eli Lilly and CompanyIndianapolisUSA
  7. 7.PharmaceuticsUniversity of FloridaOrlandoUSA

Personalised recommendations