Animal Models of Type 2 Diabetes, Obesity and Nonalcoholic Steatohepatitis – Clinical Translatability and Applicability in Preclinical Drug Development



Drug development in diabetes and obesity is a rapidly changing research field. Although the diabetes and obesity disease cluster is currently dominated by therapeutics indicated for diabetes, many anti-obesity compounds are in various stages of development and target several promising mechanisms involved in body weight regulation, particularly those linked to central appetite function. In addition, there is a considerable focus on advancing drug treatment concepts in disease-related liver complications, notably nonalcoholic steatohepatitis (NASH). Animal models of diabetes and obesity play a pivotal role in the exploration of the underlying disease mechanisms and have proven to be highly instrumental in preclinical target discovery and drug development. Most of the current disease mechanistic knowledge has arisen from research employing mouse and rat models that mimic the human condition in varying degree. The disease models are based on various experimental manipulations, including dietary concepts, genetic modifications, chemotoxins and surgical approaches. The rodent models employed in preclinical drug development for type 2 diabetes and obesity exhibit both distinct and overlapping pathology. Due to their individual clinical and histopathological phenotype, diabetes and obesity models also differ with respect to clinical translatability which has important implications for their applicability in preclinical drug development. With the aim to guide researchers in the selection of appropriate rodent models for testing drug candidates in preclinical development for diabetes and obesity, we here evaluate the most prevalent rodent models employed in type 2 diabetes and obesity research. In addition, we review current rodent models applicable for probing effects of therapeutic drug concepts in NASH.


Type 2 diabetes Obesity Nonalcoholic fatty liver disease Nonalcoholic steatohepatitis Animal model Disease phenotype Pharmacology Drug treatment Mouse Rat Translatability 


  1. 1.
    Wilmot E, Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management. Ther Adv Chronic Dis. 2014;5:234–44.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lascar N, Brown J, Pattison H, et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2017;6:69–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Edelstein SL, Knowler WC, Bain RP, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46:701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42:563–70.PubMedCrossRefGoogle Scholar
  5. 5.
    International Diabetes Federation. IDF diabetes atlas. 2015
  6. 6.
    Fazel Y, Koenig AB, Sayiner M, et al. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism. 2016;65:1017–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Prim. 2015;1:15018.PubMedCrossRefGoogle Scholar
  8. 8.
    Mandavia CH, Pulakat L, DeMarco V, et al. Over-nutrition and metabolic cardiomyopathy. Metabolism. 2012;61:1205–10.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–1159e5.PubMedCrossRefGoogle Scholar
  12. 12.
    Sanyal A, Ratziu V, Harrison S, et al. Cenicriviroc versus placebo for the treatment of nonalcoholic steatohepatitis with liver fibrosis: results from the year 1 primary analysis of the phase 2b CENTAUR study. Hepatology. 2016;64:1118.CrossRefGoogle Scholar
  13. 13.
    Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.CrossRefGoogle Scholar
  14. 14.
    Moller DE. Metabolic disease drug discovery – “hitting the target” is easier said than done. Cell Metab. 2012;15:19–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Chandrasekera PC, Pippin JJ. Of rodents and men: species-specific glucose regulation and type 2 diabetes research. ALTEX. 2014;31:157–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol. 2011;164:1248–62.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15:367–78.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15:137–49.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hansen HH, Feigh M, Veidal SS, et al. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today. 2017;22:1707–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Kinsey-Jones JS, Murphy KG. Current models and strategies in the development of antiobesity drugs. Ann N Y Acad Sci. 2011;1245:3–6.PubMedCrossRefGoogle Scholar
  21. 21.
    DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1:15019.PubMedCrossRefGoogle Scholar
  22. 22.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Rahier J, Guiot Y, Goebbels RM, et al. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(Suppl 4):32–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Mezza T, Muscogiuri G, Sorice GP, et al. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes. 2014;63:994–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66:241–55.PubMedCrossRefGoogle Scholar
  27. 27.
    Saisho Y, Butler AE, Manesso E, et al. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36:111–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Yoneda S, Uno S, Iwahashi H, et al. Predominance of β-cell neogenesis rather than replication in humans with an impaired glucose tolerance and newly diagnosed diabetes. J Clin Endocrinol Metab. 2013;98:2053–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen C, Cohrs CM, Stertmann J, et al. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017;6:943–57.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Marchetti P, Lupi R, Del Guerra S, et al. The β-Cell in human type 2 diabetes. Adv Exp Med Biol. 2010;654:501–14.Google Scholar
  31. 31.
    American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40:S11–24.CrossRefGoogle Scholar
  32. 32.
    Bailey CJ, Tahrani AA, Barnett AH. Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol. 2016;4:350–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Tritschler S, Theis FJ, Lickert H, et al. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab. 2017;6:974–90.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166:877–94.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Van Belle TL, Taylor P, von Herrath MG. Mouse models for type 1 diabetes. Drug Discov Today Dis Model. 2009;6:41–5.CrossRefGoogle Scholar
  36. 36.
    Myers MG, Leibel RL, Seeley RJ, et al. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21:643–51.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat Rev Drug Discov. 2012;11:675–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol. 2017;13:338–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Farooqi IS, Keogh JM, Kamath S, et al. Partial leptin deficiency and human adiposity. Nature. 2001;414:34–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Clément K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.PubMedCrossRefGoogle Scholar
  41. 41.
    Strobel A, Issad T, Camoin L, et al. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998;18:213–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol. 2014;223:T63–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Funcke J-B, von Schnurbein J, Lennerz B, et al. Monogenic forms of childhood obesity due to mutations in the leptin gene. Mol Cell Pediatr. 2014;1:3.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jafar-Mohammadi B, McCarthy MI. Genetics of type 2 diabetes mellitus and obesity—a review. Ann Med. 2008;40:2–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14:141–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Puff R, Dames P, Weise M, et al. Reduced proliferation and a high apoptotic frequency of pancreatic beta cells contribute to genetically-determined diabetes susceptibility of db/db BKS mice. Horm Metab Res. 2011;43:306–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Sullivan KA, Hayes JM, Wiggin TD, et al. Mouse models of diabetic neuropathy. Neurobiol Dis. 2007;28:276–85.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Trak-Smayra V, Paradis V, Massart J, et al. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol. 2011;92:413–21.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Coleman DL, Hummel KP. Hyperinsulinemia in pre-weaning diabetes (db) mice. Diabetologia. 1974;10(Suppl):607–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Dalbøge LS, Almholt DLC, Neerup TSR, et al. Characterisation of age-dependent beta cell dynamics in the male db/db mice. PLoS One. 2013;8:e82813.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Do OH, Gunton JE, Gaisano HY, et al. Changes in beta cell function occur in prediabetes and early disease in the Lepr db mouse model of diabetes. Diabetologia. 2016;59:1222–30.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Boland BB, Brown C, Boland ML, et al. Pancreatic β-cell rest replenishes insulin secretory capacity and attenuates diabetes in an extreme model of obese type 2 diabetes. Diabetes. 2019;68:131–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Shimoda M, Kanda Y, Hamamoto S, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia. 2011;54:1098–108.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dor Y, Brown J, Martinez OI, et al. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kanda Y, Shimoda M, Tawaramoto K, et al. Molecular analysis of db gene-related pancreatic beta cell dysfunction; evidence for a compensatory mechanism inhibiting development of diabetes in the db gene heterozygote. Endocr J. 2009;56:997–1008.PubMedCrossRefGoogle Scholar
  60. 60.
    Kawasaki F, Matsuda M, Kanda Y, et al. Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice. Am J Physiol Endocrinol Metab. 2005;288:E510–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Medarova Z, Bonner-Weir S, Lipes M, et al. Imaging beta-cell death with a near-infrared probe. Diabetes. 2005;54:1780–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Dalbøge LS, Almholt DLC, Neerup TSR, et al. The novel GLP-1-gastrin dual agonist ZP3022 improves glucose homeostasis and increases $β$-cell mass without affecting islet number in db/db Mice. J Pharmacol Exp Ther. 2014;350:353–60.PubMedCrossRefGoogle Scholar
  63. 63.
    van Witteloostuijn SB, Dalbøge LS, Hansen G, et al. GUB06-046, a novel secretin/glucagon-like peptide 1 co-agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice. J Pept Sci. 2017;23:845–54.PubMedCrossRefGoogle Scholar
  64. 64.
    Jurczak MJ, Lee H-Y, Birkenfeld AL, et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic β-cell function. Diabetes. 2011;60:890–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kanda Y, Shimoda M, Hamamoto S, et al. Molecular mechanism by which pioglitazone preserves pancreatic -cells in obese diabetic mice: evidence for acute and chronic actions as a PPAR agonist. AJP Endocrinol Metab. 2010;298:E278–86.CrossRefGoogle Scholar
  66. 66.
    Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia. 2002;45:1263–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Clark JB, Palmer CJ, Shaw WN. The diabetic Zucker fatty rat. Proc Soc Exp Biol Med. 1983;173:68–75.PubMedCrossRefGoogle Scholar
  68. 68.
    Peterson RG, Shaw WN, Neel MA, et al. Zucker diabetic fatty rat as a model for non-insulin dependent diabetes mellitus. Inst Lab Anim Res News. 1990;32:16–9.CrossRefGoogle Scholar
  69. 69.
    Phillips MS, Liu Q, Hammond HA, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996;13:18–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Etgen GJ, Oldham BA. Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism. 2000;49:684–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Topp BG, Atkinson LL, Finegood DT. Dynamics of insulin sensitivity, beta-cell function, and beta-cell mass during the development of diabetes in fa/fa rats. Am J Physiol Endocrinol Metab. 2007;293:E1730–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Vrang N, Jelsing J, Simonsen L, et al. The effects of 13 wk of liraglutide treatment on endocrine and exocrine pancreas in male and female ZDF rats: a quantitative and qualitative analysis revealing no evidence of drug-induced pancreatitis. Am J Physiol Endocrinol Metab. 2012;303:E253–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang X, DuBois DC, Sukumaran S, et al. Variability in Zucker diabetic fatty rats: differences in disease progression in hyperglycemic and normoglycemic animals. Diabetes Metab Syndr Obes. 2014;7:531–41.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Nawano M, Oku A, Ueta K, et al. Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab. 2000;278:E535–43.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tokuyama Y, Sturis J, DePaoli AM, et al. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995;44:1447–57.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Griffen SC, Wang J, German MS. A genetic defect in beta-cell gene expression segregates independently from the fa locus in the ZDF rat. Diabetes. 2001;50:63–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lee Y, Lingvay I, Szczepaniak LS, et al. Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. Int J Obes. 2010;34:396–400.CrossRefGoogle Scholar
  78. 78.
    Poitout V. Beta-cell lipotoxicity: burning fat into heat? Endocrinology. 2004;145:3563–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Choe SS, Choi AH, Lee J-W, et al. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: liver X receptor-mediated lipotoxicity in pancreatic -cells. Diabetes. 2007;56:1534–43.PubMedCrossRefGoogle Scholar
  80. 80.
    Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves β-cell mass and restores glucose homeostasis in the male Zucker diabetic fatty rat. J Pharmacol Exp Ther. 2014;350:657–64.PubMedCrossRefGoogle Scholar
  81. 81.
    Paulsen SJ, Vrang N, Larsen LK, et al. Stereological assessment of pancreatic beta-cell mass development in male Zucker Diabetic Fatty (ZDF) rats: correlation with pancreatic beta-cell function. J Anat. 2010;217:624–30.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes. 1998;47:358–64.PubMedCrossRefGoogle Scholar
  83. 83.
    Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes. 1995;44:249–56.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cummings BP, Digitale EK, Stanhope KL, et al. Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat. Am J Physiol Integr Comp Physiol. 2008;295:R1782–93.CrossRefGoogle Scholar
  85. 85.
    Cummings BP, Stanhope KL, Graham JL, et al. Dietary fructose accelerates the development of diabetes in UCD-T2DM rats: amelioration by the antioxidant, α-lipoic acid. Am J Physiol Integr Comp Physiol. 2010;298:R1343–50.CrossRefGoogle Scholar
  86. 86.
    Cummings BP, Bettaieb A, Graham JL, et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc Natl Acad Sci. 2011;108:14670–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Rountree AM, Reed BJ, Cummings BP, et al. Loss of coupling between calcium influx, energy consumption and insulin secretion associated with development of hyperglycaemia in the UCD-T2DM rat model of type 2 diabetes. Diabetologia. 2013;56:803–13.PubMedCrossRefGoogle Scholar
  88. 88.
    Li X, Zhang L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55:2965–73.PubMedCrossRefGoogle Scholar
  89. 89.
    Cummings BP, Stanhope KL, Graham JL, et al. Chronic administration of the glucagon-like peptide-1 analog, liraglutide, delays the onset of diabetes and lowers triglycerides in UCD-T2DM rats. Diabetes. 2010;59:2653–61.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cummings BP, Bettaieb A, Graham JL, et al. Administration of pioglitazone alone or with alogliptin delays diabetes onset in UCD-T2DM rats. J Endocrinol. 2014;221:133–44.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Phys. 1997;273:R725–30.Google Scholar
  92. 92.
    Peterson RG, Jackson CV, Zimmerman K, et al. Characterization of the ZDSD rat: a translational model for the study of metabolic syndrome and type 2 diabetes. J Diabetes Res. 2015;2015:1–10.CrossRefGoogle Scholar
  93. 93.
    Davidson EP, Coppey LJ, Holmes A, et al. Characterization of diabetic neuropathy in the Zucker diabetic Sprague-Dawley rat: a new animal model for type 2 diabetes. J Diabetes Res. 2014;2014:1–7.CrossRefGoogle Scholar
  94. 94.
    Kawano K, Hirashima T, Mori S, et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Man ZW, Zhu M, Noma Y, et al. Impaired beta-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes. 1997;46:1718–24.PubMedCrossRefGoogle Scholar
  96. 96.
    Yamada T, Kose H, Ohta T, et al. Genetic dissection of complex genetic factor involved in NIDDM of OLETF rat. Exp Diabetes Res. 2012;2012:1–6.CrossRefGoogle Scholar
  97. 97.
    Funakoshi A, Miyasaka K, Jimi A, et al. Little or no expression of the cholecystokinin-A receptor gene in the pancreas of diabetic rats (Otsuka Long-Evans Tokushima Fatty = OLETF Rats). Biochem Biophys Res Commun. 1994;199:482–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Moran TH, Katz LF, Plata-Salaman CR, et al. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Phys. 1998;274:R618–25.Google Scholar
  99. 99.
    Takiguchi S, Takata Y, Funakoshi A, et al. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene. 1997;197:169–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Dockray GJ. Cholecystokinin and gut–brain signalling. Regul Pept. 2009;155:6–10.PubMedCrossRefGoogle Scholar
  101. 101.
    Dockray GJ. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes. 2012;19:8–12.PubMedCrossRefGoogle Scholar
  102. 102.
    Koh EH, Kim M-S, Park J-Y, et al. Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: comparison with PPAR-gamma activation. Diabetes. 2003;52:2331–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Shin SJ, Chung S, Kim SJ, et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One. 2016;11:e0165703.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kosegawa I, Katayama S, Kikuchi C, et al. Metformin decreases blood pressure and obesity in OLETF rats via improvement of insulin resistance. Hypertens Res. 1996;19:37–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med. 1976;119:85–90.PubMedCrossRefGoogle Scholar
  106. 106.
    Guenifi A, Abdel-Halim SM, Höög A, et al. Preserved beta-cell density in the endocrine pancreas of young, spontaneously diabetic Goto-Kakizaki (GK) rats. Pancreas. 1995;10:148–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Movassat J, Saulnier C, Serradas P, et al. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia. 1997;40:916–25.PubMedCrossRefGoogle Scholar
  108. 108.
    Hughes SJ, Suzuki K, Goto Y. The role of islet secretory function in the development of diabetes in the GK Wistar rat. Diabetologia. 1994;37:863–70.PubMedCrossRefGoogle Scholar
  109. 109.
    Standaert ML, Sajan MP, Miura A, et al. Insulin-induced activation of atypical protein kinase C, but not protein kinase B, is maintained in diabetic (ob/ob and Goto-Kakazaki) liver. Contrasting insulin signaling patterns in liver versus muscle define phenotypes of type 2 diabetic and high fat-induced insulin-resistant states. J Biol Chem. 2004;279:24929–34.PubMedCrossRefGoogle Scholar
  110. 110.
    Koyama M, Wada R, Sakuraba H, et al. Accelerated loss of islet beta cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol. 1998;153:537–45.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Portha B, Serradas P, Bailbé D, et al. Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes. 1991;40:486–91.PubMedCrossRefGoogle Scholar
  112. 112.
    Bisbis S, Bailbe D, Tormo MA, et al. Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol Metab. 1993;265:E807–13.Google Scholar
  113. 113.
    Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes. 2001;50(Suppl 1):S84–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Movassat J, Calderari S, Fernández E, et al. Type 2 diabetes – a matter of failing beta-cell neogenesis? Clues from the GK rat model. Diabetes Obes Metab. 2007;9(Suppl 2):187–95.PubMedCrossRefGoogle Scholar
  115. 115.
    Gauguier D, Froguel P, Parent V, et al. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet. 1996;12:38–43.PubMedCrossRefGoogle Scholar
  116. 116.
    Tourrel C, Bailbe D, Lacorne M, et al. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes. 2002;51:1443–52.PubMedCrossRefGoogle Scholar
  117. 117.
    Inaba W, Mizukami H, Kamata K, et al. Effects of long-term treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet endocrine cells in non-obese type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol. 2012;691:297–306.PubMedCrossRefGoogle Scholar
  118. 118.
    Simonsen L, Pilgaard S, Orskov C, et al. Long-term exendin-4 treatment delays natural deterioration of glycaemic control in diabetic Goto-Kakizaki rats. Diabetes Obes Metab. 2009;11:884–90.PubMedCrossRefGoogle Scholar
  119. 119.
    Nakamura M, Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia. 1967;3:212–21.PubMedCrossRefGoogle Scholar
  120. 120.
    Matsuo T, Shino A, Iwatsuka H, et al. Induction of overt diabetes in KK mice by dietary means. Endocrinol Jpn. 1970;17:477–88.PubMedCrossRefGoogle Scholar
  121. 121.
    Miltenberger RJ, Mynatt RL, Wilkinson JE, et al. The role of the agouti gene in the yellow obese syndrome. J Nutr. 1997;127:1902S–7S.PubMedCrossRefGoogle Scholar
  122. 122.
    Lu D, Willard D, Patel IR, et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994;371:799–802.PubMedCrossRefGoogle Scholar
  123. 123.
    Ebihara K, Ogawa Y, Katsuura G, et al. Involvement of agouti-related protein, an endogenous antagonist of hypothalamic melanocortin receptor, in leptin action. Diabetes. 1999;48:2028–33.PubMedCrossRefGoogle Scholar
  124. 124.
    Suto J, Matsuura S, Imamura K, et al. Genetic analysis of non-insulin-dependent diabetes mellitus in KK and KK-Ay mice. Eur J Endocrinol. 1998;139:654–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Halaas JL, Boozer C, Blair-West J, et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A. 1997;94:8878–83.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Iwatsuka H, Shino A, Suzuoki Z. General survey of diabetic features of yellow KK mice. Endocrinol Jpn. 1970;17:23–35.PubMedCrossRefGoogle Scholar
  127. 127.
    Diani AR, Sawada GA, Hannah BA, et al. Analysis of pancreatic islet cells and hormone content in the spontaneously diabetic KKAy mouse by morphometry, immunocytochemistry and radioimmunoassay. Virchows Arch A Pathol Anat Histopathol. 1987;412:53–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Kimura M, Suzuki J, Amemiya K. A genetically diabetic model “KK-CAy mice” for a pharmacological assay. Endocrinol Jpn. 1979;26:185–95.Google Scholar
  129. 129.
    Rhee S, Sung Y, Lee Y, et al. Obesity of TallyHO/JngJ mouse is due to increased food intake with early development of leptin resistance. Exp Clin Endocrinol Diabetes. 2010;119:243–51.PubMedCrossRefGoogle Scholar
  130. 130.
    Parkman J, Mao X, Dillon K, et al. Genotype-dependent metabolic responses to semi-purified high-sucrose high-fat diets in the TALLYHO/Jng vs. C57BL/6 mouse during the development of obesity and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2016;124:622–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Kim JH, Stewart TP, Soltani-Bejnood M, et al. Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J Endocrinol. 2006;191:437–46.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Ostler JE, Maurya SK, Dials J, et al. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. Am J Physiol Metab. 2014;306:E592–605.Google Scholar
  133. 133.
    Kim JH, Sen S, Avery CS, et al. Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics. 2001;74:273–86.PubMedCrossRefGoogle Scholar
  134. 134.
    Denvir J, Boskovic G, Fan J, et al. Whole genome sequence analysis of the TALLYHO/Jng mouse. BMC Genomics. 2016;17:907.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Franko A, Neschen S, Rozman J, et al. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice. Mol Metab. 2017;6:256–66.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Neschen S, Scheerer M, Seelig A, et al. Metformin supports the antidiabetic effect of a sodium glucose cotransporter 2 inhibitor by suppressing endogenous glucose production in diabetic mice. Diabetes. 2015;64:284–90.PubMedCrossRefGoogle Scholar
  137. 137.
    Bielschowsky F, Bielschowsky M. The New Zealand strain of obese mice; their response to stilboestrol and to insulin. Aust J Exp Biol Med Sci. 1956;34:181–98.PubMedCrossRefGoogle Scholar
  138. 138.
    Proietto J, Larkins RG. A perspective on the New Zealand obese mouse. In: Shafrir E, editor. Lessons from animal models of diabetes, vol. 4. London: Smith-Gordon; 1993. p. 65–73.Google Scholar
  139. 139.
    Leiter EH, Reifsnyder PC, Flurkey K, et al. NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes. 1998;47:1287–95.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Haskell BD, Flurkey K, Duffy TM, et al. The diabetes-prone NZO/HlLt strain. I. Immunophenotypic comparison to the related NZB/BlNJ and NZW/LacJ strains. Lab Investig. 2002;82:833–42.PubMedCrossRefGoogle Scholar
  141. 141.
    Cho Y-R, Kim H-J, Park S-Y, et al. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Metab. 2007;293:E327–36.Google Scholar
  142. 142.
    Kluth O, Matzke D, Kamitz A, et al. Identification of four mouse diabetes candidate genes altering β-cell proliferation. PLoS Genet. 2015;11:e1005506.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Taylor BA, Wnek C, Schroeder D, et al. Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome. 2001;12:95–103.PubMedCrossRefGoogle Scholar
  144. 144.
    Jürgens HS, Schürmann A, Kluge R, et al. Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice. Physiol Genomics. 2006;25:234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Herberg L, Major E, Hennigs U, et al. Differences in the development of the obese-hyperglycemic syndrome in obob and NZO mice. Diabetologia. 1970;6:292–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Jürgens HS, Neschen S, Ortmann S, et al. Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Diabetologia. 2007;50:1481–9.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Igel M, Becker W, Herberg L, et al. Hyperleptinemia, leptin resistance, and polymorphic leptin receptor in the New Zealand obese mouse. Endocrinology. 1997;138:4234–9.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Veroni MC, Proietto J, Larkins RG. Evolution of insulin resistance in New Zealand obese mice. Diabetes. 1991;40:1480–7.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Melez KA, Harrison LC, Gilliam JN, et al. Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes. 1980;29:835–40.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Kluth O, Mirhashemi F, Scherneck S, et al. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia. 2011;54:605–16.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Laeger T, Baumeier C, Wilhelmi I, et al. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes. Diabetologia. 2017;60:2274–84.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Schwenk RW, Baumeier C, Finan B, et al. GLP-1–oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia. 2015;58:604–14.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Leiter EH, Reifsnyder PC, Zhang W, et al. Differential endocrine responses to rosiglitazone therapy in new mouse models of type 2 diabetes. Endocrinology. 2006;147:919–26.PubMedCrossRefGoogle Scholar
  154. 154.
    Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001;18:247–56.PubMedCrossRefGoogle Scholar
  155. 155.
    Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.PubMedGoogle Scholar
  156. 156.
    Cunningham VJ, Rabiner EA, Slifstein M, et al. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30:46–50.PubMedCrossRefGoogle Scholar
  157. 157.
    Malaisse WJ. Alloxan toxicity to the pancreatic B-cell. A new hypothesis. Biochem Pharmacol. 1982;31:3527–34.PubMedCrossRefGoogle Scholar
  158. 158.
    Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70:5.47.1–20.CrossRefGoogle Scholar
  159. 159.
    Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51:216–26.PubMedCrossRefGoogle Scholar
  160. 160.
    Cardinal JW, Allan DJ, Cameron DP. Differential metabolite accumulation may be the cause of strain differences in sensitivity to streptozotocin-induced β cell death in inbred mice. Endocrinology. 1998;139:2885–91.PubMedCrossRefGoogle Scholar
  161. 161.
    Ostenson CG, Grill V, Roos M. Studies on sex dependency of B-cell susceptibility to streptozotocin in a rat model of type II diabetes mellitus. Exp Clin Endocrinol. 1989;93:241–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Masiello P, De Paoli A, Bergamini E. Age-Dependent changes in the sensitivity of the rat to a diabetogenic agent (streptozotocin). Endocrinology. 1975;96:787–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Bonner-Weir S, Trent DF, Honey RN, et al. Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes. 1981;30:64–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Portha B, Picon L, Rosselin G. Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia. 1979;17:371–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Kataoka M, Kawamuro Y, Shiraki N, et al. Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment. Biochem Biophys Res Commun. 2013;430:1103–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Portha B, Kergoat M. Dynamics of glucose-induced insulin release during the spontaneous remission of streptozocin diabetes induced in the newborn rat. Diabetes. 1985;34:574–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Grill V, Westberg M, Ostenson CG. B cell insensitivity in a rat model of non-insulin-dependent diabetes. Evidence for a rapidly reversible effect of previous hyperglycemia. J Clin Invest. 1987;80:664–9.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Welsh N, Hellerström C. In vitro restoration of insulin production in islets from adult rats treated neonatally with streptozotocin. Endocrinology. 1990;126:1842–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Nørgaard SA, Sand FW, Sørensen DB, et al. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy. Lab Anim. 2018;52:373–83.Google Scholar
  170. 170.
    Bolzán AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res. 2002;512:121–34.PubMedCrossRefGoogle Scholar
  171. 171.
    Reed M, Meszaros K, Entes L, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49:1390–4.PubMedCrossRefGoogle Scholar
  172. 172.
    Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–20.PubMedCrossRefGoogle Scholar
  173. 173.
    Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95:605–13.PubMedCrossRefGoogle Scholar
  174. 174.
    World Health Organization. Obesity and overweight Fact sheet. 2017.
  175. 175.
    Loos RJF, Janssens ACJW. Predicting polygenic obesity using genetic information. Cell Metab. 2017;25:535–43.PubMedCrossRefGoogle Scholar
  176. 176.
    Clemmensen C, Müller TD, Woods SC, et al. Gut-brain cross-talk in metabolic control. Cell. 2017;168:758–74.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Brockmann GA, Bevova MR. Using mouse models to dissect the genetics of obesity. Trends Genet. 2002;18:367–76.PubMedCrossRefGoogle Scholar
  178. 178.
    Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol. 2006;15:318–30.PubMedCrossRefGoogle Scholar
  179. 179.
    Dalbøge LS, Pedersen PJ, Hansen G, et al. A hamster model of diet-induced obesity for preclinical evaluation of anti-obesity, anti-diabetic and lipid modulating agents. PLoS One. 2015;10:e0135634.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    West DB, Boozer CN, Moody DL, et al. Dietary obesity in nine inbred mouse strains. Am J Physiol Integr Comp Physiol. 1992;262:R1025–32.CrossRefGoogle Scholar
  181. 181.
    Montgomery MK, Hallahan NL, Brown SH, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013;56:1129–39.PubMedCrossRefGoogle Scholar
  182. 182.
    Marques C, Meireles M, Norberto S, et al. High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocytes. 2016;5:11–21.CrossRefGoogle Scholar
  183. 183.
    Hansen G, Jelsing J, Vrang N. Effects of liraglutide and sibutramine on food intake, palatability, body weight and glucose tolerance in the gubra DIO-rats. Acta Pharmacol Sin. 2012;33:194–200.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Axel AMD, Mikkelsen JD, Hansen HH. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology. 2010;35:1464–76.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Dalbøge LS, Pedersen SL, van Witteloostuijn SB, et al. Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake. J Pept Sci. 2015;21:85–94.PubMedCrossRefGoogle Scholar
  186. 186.
    Jelsing J, Vrang N, Hansen G, et al. Liraglutide: short-lived effect on gastric emptying – long lasting effects on body weight. Diabetes Obes Metab. 2012;14:531–8.PubMedCrossRefGoogle Scholar
  187. 187.
    Lachey JL, D’Alessio DA, Rinaman L, et al. The role of central glucagon-like peptide-1 in mediating the effects of visceral illness: differential effects in rats and mice. Endocrinology. 2005;146:458–62.PubMedCrossRefGoogle Scholar
  188. 188.
    Al-Saffar A, da Costa AN, Delaunois A, et al. Gastrointestinal safety pharmacology in drug discovery and development. In: Pugsley M, Curtis M, editors. Principles of safety pharmacology. Handbook of experimental pharmacology, vol. 229. Berlin/Heidelberg: Springer; 2015. p. 291–321.Google Scholar
  189. 189.
    MacLean PS, Bergouignan A, Cornier M-A, et al. Biology’s response to dieting: the impetus for weight regain. Am J Physiol Integr Comp Physiol. 2011;301:R581–600.CrossRefGoogle Scholar
  190. 190.
    Ratner C, Madsen AN, Kristensen LV, et al. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. Am J Physiol Integr Comp Physiol. 2015;308:R973–82.CrossRefGoogle Scholar
  191. 191.
    Polidori D, Sanghvi A, Seeley RJ, et al. How strongly does appetite counter weight loss? quantification of the feedback control of human energy intake. Obesity (Silver Spring). 2016;24:2289–95.CrossRefGoogle Scholar
  192. 192.
    Kitka T, Tuza S, Varga B, et al. Differential regulation of metabolic parameters by energy deficit and hunger. Metabolism. 2015;64:1235–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity. 2007;15:798–808.PubMedCrossRefGoogle Scholar
  194. 194.
    Sato Mito N, Suzui M, Yoshino H, et al. Long term effects of high fat and sucrose diets on obesity and lymphocyte proliferation in mice. J Nutr Health Aging. 2009;13:602–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Shapiro A, Mu W, Roncal C, et al. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Wada T, Kenmochi H, Miyashita Y, et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology. 2010;151:2040–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Rothwell NJ, Stock MJ. The cafeteria diet as a tool for studies of thermogenesis. J Nutr. 1988;118:925–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Integr Comp Physiol. 2016;311:R811–40.CrossRefGoogle Scholar
  199. 199.
    Liu C, Lee S, Elmquist JK. Circuits controlling energy balance and mood: inherently intertwined or just complicated intersections? Cell Metab. 2014;19:902–9.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Kelley AE, Baldo BA, Pratt WE. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol. 2005;493:72–85.PubMedCrossRefGoogle Scholar
  201. 201.
    Clifton PG. Neural circuits of eating behaviour: opportunities for therapeutic development. J Psychopharmacol. 2017;31:1388–402.PubMedCrossRefGoogle Scholar
  202. 202.
    Meye FJ, Adan RAH. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci. 2014;35:31–40.PubMedCrossRefGoogle Scholar
  203. 203.
    Nathan PJ, Bullmore ET. From taste hedonics to motivational drive: central μ-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol. 2009;12:995.PubMedCrossRefGoogle Scholar
  204. 204.
    Hansen TT, Jakobsen TA, Nielsen MS, et al. Hedonic changes in food choices following Roux-en-Y gastric bypass. Obes Surg. 2016;26:1946–55.PubMedCrossRefGoogle Scholar
  205. 205.
    Hansen HH, Jensen MM, Overgaard A, et al. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat. Pharmacol Biochem Behav. 2013;110:265–71.PubMedCrossRefGoogle Scholar
  206. 206.
    Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol. 2016;310:R885–95.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Barkholt P, Pedersen PJ, Hay-Schmidt A, et al. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass. Mol Metab. 2016;5:296–304.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Boyle CN, Lutz TA, Le Foll C. Amylin – Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab. 2018;8:203–10.PubMedCrossRefGoogle Scholar
  209. 209.
    la Fleur SE, Luijendijk MCM, van der Zwaal EM, et al. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int J Obes. 2014;38:643–9.CrossRefGoogle Scholar
  210. 210.
    Martire SI, Holmes N, Westbrook RF, et al. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity. PLoS One. 2013;8:e60407.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Bake T, Hellgren KT, Dickson SL. Acute ghrelin changes food preference from a high-fat diet to chow during binge-like eating in rodents. J Neuroendocrinol. 2017;29:1–12.Google Scholar
  212. 212.
    Hansen HH, Hansen G, Tang-Christensen M, et al. The novel triple monoamine reuptake inhibitor tesofensine induces sustained weight loss and improves glycemic control in the diet-induced obese rat: comparison to sibutramine and rimonabant. Eur J Pharmacol. 2010;636:88–95.PubMedCrossRefGoogle Scholar
  213. 213.
    Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41:317–8.PubMedCrossRefGoogle Scholar
  214. 214.
    Mayer J, Bates MW, Dickie MM. Hereditary diabetes in genetically obese mice. Science. 1951;113:746–7.PubMedCrossRefGoogle Scholar
  215. 215.
    Coleman DL, Hummel KP. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia. 1973;9:287–93.PubMedCrossRefGoogle Scholar
  216. 216.
    Dubuc PU. The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism. 1976;25:1567–74.PubMedCrossRefGoogle Scholar
  217. 217.
    Ludwig S, Muller-Wieland D, Goldstein BJ, et al. The insulin receptor gene and its expression in insulin-resistant mice. Endocrinology. 1988;123:594–600.PubMedCrossRefGoogle Scholar
  218. 218.
    Garthwaite TL, Martinson DR, Tseng LF, et al. A longitudinal hormonal profile of the genetically obese mouse. Endocrinology. 1980;107:671–6.PubMedCrossRefGoogle Scholar
  219. 219.
    Tomita T, Doull V, Pollock HG, et al. Pancreatic islets of obese hyperglycemic mice (ob/ob). Pancreas. 1992;7:367–75.PubMedCrossRefGoogle Scholar
  220. 220.
    Irles E, Ñeco P, Lluesma M, et al. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Mol Cell Endocrinol. 2015;404:46–55.PubMedCrossRefGoogle Scholar
  221. 221.
    Bock T, Pakkenberg B, Buschard K. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes. 2003;52:1716–22.PubMedCrossRefGoogle Scholar
  222. 222.
    Flowers JB, Rabaglia ME, Schueler KL, et al. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes. 2007;56:1228–39.PubMedCrossRefGoogle Scholar
  223. 223.
    Menahan LA. Age-related changes in lipid and carbohydrate metabolism of the genetically obese mouse. Metabolism. 1983;32:172–8.PubMedCrossRefGoogle Scholar
  224. 224.
    Lindström P. β-cell function in obese-hyperglycemic mice [ob/ob Mice]. In: Islam MS, editor. The Islets of Langerhans, Advances in experimental medicine and biology, vol. 654. Berlin/Heidelberg: Springer; 2010. p. 463–77.Google Scholar
  225. 225.
    Garris DR, Garris BL. Cytochemical analysis of pancreatic islet hypercytolipidemia following diabetes (db/db) and obese (ob/ob) mutation expression: influence of genomic background. Pathobiology. 2004;71:231–40.PubMedCrossRefGoogle Scholar
  226. 226.
    McQuaid TS, Saleh MC, Joseph JW, et al. cAMP-mediated signaling normalizes glucose-stimulated insulin secretion in uncoupling protein-2 overexpressing beta-cells. J Endocrinol. 2006;190:669–80.PubMedCrossRefGoogle Scholar
  227. 227.
    Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965;131:541–58.PubMedCrossRefGoogle Scholar
  228. 228.
    Hahn HJ, Hellman B, Lernmark A, et al. The pancreatic beta-cell recognition of insulin secretogogues. Influence of neuraminidase treatment on the release of insulin and the islet content of insulin, sialic acid, and cyclic adenosine 3′:5′-monophosphate. J Biol Chem. 1974;249:5275–84.PubMedGoogle Scholar
  229. 229.
    Edvell A, Lindström P. Development of insulin secretory function in young obese hyperglycemic mice (Umeå ob/ob). Metabolism. 1995;44:906–13.PubMedCrossRefGoogle Scholar
  230. 230.
    Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269:540–3.PubMedCrossRefGoogle Scholar
  231. 231.
    Weigle DS, Bukowski TR, Foster DC, et al. Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. J Clin Invest. 1995;96:2065–70.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    D’souza AM, Asadi A, Johnson JD, et al. Leptin deficiency in rats results in hyperinsulinemia and impaired glucose homeostasis. Endocrinology. 2014;155:1268–79.PubMedCrossRefGoogle Scholar
  233. 233.
    Chua SC, White DW, Wu-Peng XS, et al. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes. 1996;45:1141–3.PubMedCrossRefGoogle Scholar
  234. 234.
    Crouse JA, Elliott GE, Burgess TL, et al. Altered cell surface expression and signaling of leptin receptors containing the fatty mutation. J Biol Chem. 1998;273:18365–73.PubMedCrossRefGoogle Scholar
  235. 235.
    Yamashita T, Murakami T, Iida M, et al. Leptin receptor of Zucker fatty rat performs reduced signal transduction. Diabetes. 1997;46:1077–80.PubMedCrossRefGoogle Scholar
  236. 236.
    Zucker LM, Zucker TF. Fatty, a new mutation in the rat. J Hered. 1961;52:275–8.CrossRefGoogle Scholar
  237. 237.
    Zucker LM, Antoniades HN. Insulin and obesity in the Zucker genetically obese rat. Endocrinology. 1972;90:1320–30.PubMedCrossRefGoogle Scholar
  238. 238.
    Augstein P, Salzsieder E. Morphology of pancreatic islets: a time course of pre-diabetes in Zucker fatty rats. In: Stocker C, editor. Type 2 diabetes, methods in molecular biology, vol. 560. Berlin/Heidelberg: Springer; 2009. p. 159–89.Google Scholar
  239. 239.
    Leonard BL, Watson RN, Loomes KM, et al. Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes. Acta Diabetol. 2005;42:162–70.PubMedCrossRefGoogle Scholar
  240. 240.
    Ikeda H, Shino A, Matsuo T, et al. A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes. 1981;30:1045–50.PubMedCrossRefGoogle Scholar
  241. 241.
    Durham HA, Truett GE. Development of insulin resistance and hyperphagia in Zucker fatty rats. AJP Regul Integr Comp Physiol. 2005;290:R652–8.CrossRefGoogle Scholar
  242. 242.
    Bremond J, Bonte D, Orosco M, et al. Variations of plasma lipid fractions in relation to age in two models of obesity. Int J Obes. 1983;7:467–75.PubMedGoogle Scholar
  243. 243.
    Abadie JM, Malcom GT, Porter JR, et al. Can associations between free fatty acid levels and metabolic parameters determine insulin resistance development in obese Zucker rats? Life Sci. 2001;69:2675–83.PubMedCrossRefGoogle Scholar
  244. 244.
    Maher MA, Banz WJ, Zemel MB. Variations of blood pressures in lean Zucker rats fed low or high fat diets. J Nutr. 1995;125:2618–22.PubMedGoogle Scholar
  245. 245.
    Maher MA, Banz WJ, Truett GE, et al. Dietary fat and sex modify heterozygote effects of the rat fatty (fa) allele. J Nutr. 1996;126:2487–93.PubMedCrossRefGoogle Scholar
  246. 246.
    Fellmann L, Nascimento AR, Tibiriça E, et al. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137:331–40.PubMedCrossRefGoogle Scholar
  247. 247.
    Peterson RG, Van Jackson C, Zimmerman KM, et al. Glucose dysregulation and response to common anti-diabetic agents in the FATZO/Pco mouse. PLoS One. 2017;12:e0179856.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Droz BA, Sneed BL, Jackson CV, et al. Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse. PLoS One. 2017;12:e0179808.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Bedossa P. Current histological classification of NAFLD: strength and limitations. Hepatol Int. 2013;7(Suppl 2):765–70.PubMedCrossRefGoogle Scholar
  250. 250.
    Bedossa P. Pathology of non-alcoholic fatty liver disease. Liver Int. 2017;37:85–9.PubMedCrossRefGoogle Scholar
  251. 251.
    Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.PubMedCrossRefGoogle Scholar
  252. 252.
    Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2016;14:32–42.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Rosso N, Chavez-Tapia NC, Tiribelli C, et al. Translational approaches: from fatty liver to non-alcoholic steatohepatitis. World J Gastroenterol. 2014;20:9038–49.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Berlanga A, Guiu-Jurado E, Porras JA, et al. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol. 2014;7:221–39.PubMedPubMedCentralGoogle Scholar
  255. 255.
    Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.PubMedCrossRefGoogle Scholar
  258. 258.
    Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic Fatty liver disease. Gastroenterology. 2015;149:389–397.e10.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10:656–65.PubMedCrossRefGoogle Scholar
  260. 260.
    Agopian VG, Kaldas FM, Hong JC, et al. Liver transplantation for nonalcoholic steatohepatitis. Ann Surg. 2012;256:624–33.PubMedCrossRefGoogle Scholar
  261. 261.
    Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–55.CrossRefGoogle Scholar
  262. 262.
    Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Patel NS, Doycheva I, Peterson MR, et al. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2015;13:561–568.e1.PubMedCrossRefGoogle Scholar
  264. 264.
    Marchesini G, Petta S, Dalle Grave R. Diet, weight loss, and liver health in nonalcoholic fatty liver disease: pathophysiology, evidence, and practice. Hepatology. 2016;63:2032–43.PubMedCrossRefGoogle Scholar
  265. 265.
    Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov. 2016;15:249–74.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Liang W, Menke AL, Driessen A, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014;9:e115922.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Farrell GC, Mridha AR, Yeh MM, et al. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int. 2014;34:1084–93.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Clapper JR, Hendricks MD, Gu G, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. AJP Gastrointest Liver Physiol. 2013;305:G483–95.CrossRefGoogle Scholar
  269. 269.
    Haczeyni F, Poekes L, Wang H, et al. Obeticholic acid improves adipose morphometry and inflammation and reduces steatosis in dietary but not metabolic obesity in mice. Obesity (Silver Spring). 2017;25:155–65.CrossRefGoogle Scholar
  270. 270.
    Kristiansen MNB, Veidal SS, Rigbolt KTG, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J Hepatol. 2016;8:673.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Tølbøl KS, Kristiansen MN, Hansen HH, et al. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J Gastroenterol. 2018;24:179–94.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Roth JD, Feigh M, Veidal SS, et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed nonalcoholic steatohepatitis. World J Gastroenterol. 2018;24:195–210.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Sanches SCL, Ramalho LNZ, Augusto MJ, et al. Nonalcoholic steatohepatitis: a search for factual animal models. Biomed Res Int. 2015;2015:1–13.CrossRefGoogle Scholar
  274. 274.
    Delire B, Stärkel P, Leclercq I. Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J Clin Transl Hepatol. 2015;3:53–66.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Carino A, Cipriani S, Marchianò S, et al. BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci Rep. 2017;7:42801.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79:502–9.PubMedCrossRefGoogle Scholar
  277. 277.
    Valdecantos MP, Pardo V, Ruiz L, et al. A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice. Hepatology. 2017;65:950–68.PubMedCrossRefGoogle Scholar
  278. 278.
    Kucera O, Cervinkova Z. Experimental models of non-alcoholic fatty liver disease in rats. World J Gastroenterol. 2014;20:8364.PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Van Rooyen DM, Gan LT, Yeh MM, et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol. 2013;59:144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    van Koppen A, Verschuren L, van den Hoek AM, et al. Uncovering a predictive molecular signature for the onset of NASH-related fibrosis in a translational NASH mouse model. Cell Mol Gastroenterol Hepatol. 2018;5:83–98.e10.PubMedCrossRefGoogle Scholar
  281. 281.
    Kristiansen MNB, Veidal SS, Rigbolt KTG, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J Hepatol. 2016:8, 673–684.Google Scholar
  282. 282.
    Trevaskis JL, Griffin PS, Wittmer C, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. AJP Gastrointest Liver Physiol. 2012;302:G762–72.CrossRefGoogle Scholar
  283. 283.
    Jouihan H, Will S, Guionaud S, et al. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice. Mol Metab. 2017;6:1360–70.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Ding Z-M, Xiao Y, Wu X, et al. Progression and regression of hepatic lesions in a mouse model of NASH induced by dietary intervention and its implications in pharmacotherapy. Front Pharmacol. 2018;9:410.PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Honda Y, Imajo K, Kato T, et al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One. 2016;11:e0146337.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Boland ML, Oldham S, Boland BB, et al. Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction. World J Gastroenterol. 2018;24:1748–65.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Charlton M, Krishnan A, Viker K, et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Liver Physiol. 2011;301:G825–34.Google Scholar
  288. 288.
    Krishnan A, Abdullah TS, Mounajjed T, et al. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2017;312:G666–80.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Asgharpour A, Cazanave SC, Pacana T, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol. 2016;65:579–88.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Filozof C, Chow S-C, Dimick-Santos L, et al. Clinical endpoints and adaptive clinical trials in precirrhotic nonalcoholic steatohepatitis: facilitating development approaches for an emerging epidemic. Hepatol Commun. 2017;1:577–85.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Tølbøl KS, Stierstorfer B, Rippmann JF, et al. Disease progression and pharmacological intervention in a nutrient-deficient rat model of nonalcoholic steatohepatitis. Dig Dis Sci. 2018. In press.Google Scholar
  292. 292.
    Matsumoto M, Hada N, Sakamaki Y, et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol. 2013;94:93–103.PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Nakae D. Endogenous liver carcinogenesis in the rat. Pathol Int. 1999;49:1028–42.PubMedCrossRefGoogle Scholar
  294. 294.
    Kirsch RRER, Clarkson V, Shephard EG, et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol. 2003;18:1272–82.PubMedCrossRefGoogle Scholar
  295. 295.
    Weber LWD, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33:105–36.PubMedCrossRefGoogle Scholar
  296. 296.
    Wallace M, Hamesch K, Lunova M, et al. Standard operating procedures in experimental liver research: thioacetamide model in mice and rats. Lab Anim. 2015;49:21–9.PubMedCrossRefGoogle Scholar
  297. 297.
    Jenkins SA, Grandison A, Baxter JN, et al. A dimethylnitrosamine-induced model of cirrhosis and portal hypertension in the rat. J Hepatol. 1985;1:489–99.PubMedCrossRefGoogle Scholar
  298. 298.
    Fujii M, Shibazaki Y, Wakamatsu K, et al. A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol. 2013;46:141–52.PubMedCrossRefGoogle Scholar
  299. 299.
    Kim YO, Popov Y, Schuppan D. Optimized mouse models for liver fibrosis. In: Clausen BE, Laman JD, editors. Inflammation. Methods and protocols, vol. 1559. Berlin/Heidelberg: Springer; 2017. p. 279–96.Google Scholar
  300. 300.
    Gu K, Zhao J-D, Ren Z-G, et al. A natural process of cirrhosis resolution and deceleration of liver regeneration after thioacetamide withdrawal in a rat model. Mol Biol Rep. 2011;38:1687–96.PubMedCrossRefGoogle Scholar
  301. 301.
    Tsuchida T, Lee YA, Fujiwara N, et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 2018;69:385–95.PubMedCrossRefGoogle Scholar
  302. 302.
    Kubota N, Kado S, Kano M, et al. A high-fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with non-alcoholic steatohepatitis in mice. Clin Exp Pharmacol Physiol. 2013;40:422–30.PubMedCrossRefGoogle Scholar
  303. 303.
    Chheda TK, Shivakumar P, Sadasivan SK, et al. Fast food diet with CCl4 micro-dose induced hepatic-fibrosis--a novel animal model. BMC Gastroenterol. 2014;14:89.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gubra ApsHørsholmDenmark

Personalised recommendations