Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (2017)
Google Scholar
Bakas, S. et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (2017)
Google Scholar
Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 1–13 (2017)
CrossRef
Google Scholar
Kickingereder, P., et al.: Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiol. 280(3), 880–889 (2016)
CrossRef
Google Scholar
Konstantinos, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
CrossRef
Google Scholar
Mahajan, A., et al.: Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin. Radiol. 70(10), 1060–1082 (2015)
CrossRef
Google Scholar
Mahajan, A., Moiyadi, A.V., Jalali, R., Sridhar, E.: Radiogenomics of glioblastoma: a window into its imaging and molecular variability. Cancer Imaging 15(Suppl. 1), 5–7 (2015)
Google Scholar
Martin, A., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. CoRR (2016)
Google Scholar
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)
CrossRef
Google Scholar
Nelly, G., Eduard, M., Pilar, S.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)
CrossRef
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Seow, P., Wong, J.H.D., Ahmad-Annuar, A., Mahajan, A., Abdullah, N.A., Ramli, N.: Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br. J. Radiol. 91, 20170930 (2017)
CrossRef
Google Scholar
Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)
CrossRef
Google Scholar
Baid, U., Talbar, S., Talbar, S.: Brain tumor segmentation based on non negative matrix factorization and fuzzy clustering. In: Fifth International Conference on Bio-Imaging (2017)
Google Scholar
Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)